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CHAPTER 1   INTRODUCTION 
 
 
The first qualitative descriptions of turbulent flows were made by Leonardo 
da Vinci (1452-1519), whose drawings sometimes illustrate turbulent 
phenomena observed in natural watercourses, but the first scientific 
approach to the study of turbulence is due to Osborne Reynolds (1842-
1912), who showed the importance of the dimensionless number, known as 
the Reynolds number, and introduced the concept of turbulent stress. Most 
subsequent studies, even the most recent ones are based on the approach he 
followed. It consists in representing all the hydrodynamic variables of a 
turbulent flow as the sum of two components in the framework of a 
statistical approach: the average and the fluctuating or turbulent component. 
Applying appropriate operations to the equations of motion, Osborne 
Reynolds obtained the so-called Reynolds equations that describe the 
dynamics in terms of average components. The non-linearity of the 
equations of motion, however, gives raise to the interaction between the 
fluctuating and the average components through the turbulent stresses or 
Reynolds stresses. It is also worth mentioning Lewis Richardson’s work 
(1922-1926). He introduced only general ideas in qualitative form without 
making any deduction that could be formulated in a precise mathematical 
language but he gave a thoughtful insight into the dynamics of turbulence. 
To him we owe the concept that the developed turbulence consists of a 
hierarchy of “eddies” of various magnitude. The word “eddy”, still used 
today, was not defined exactly1 but was used by him roughly with the 
meaning of vortex , i.e. as a flow tube with a vorticity concentrated inside 
and negligible outside, and also in a sense of disturbance or non-
homogeneity of the motion. The process of energy cascade, later formulated 
in a clear and accurate way by other scientists, was synthesized by 

																																																								
1 The vorticity, on the contrary, is well defined and is crucial in the turbulence dynamics. 
Note that there is an important distinction between vorticity and vortices: for example, a 
laminar boundary layer has vorticity but no vortices. 
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Richardson in the following verses: 
 
Big whorls have little whorls,   
Which feed on their velocity; 
And little whorls have lesser whorls 
And so on to viscosity (in the molecular sense).  
 
To Geoffrey Taylor (1886-1975), Ludwig Prandtl (1875-1953) and his pupil 
Theodor von Karman (1881-1963) is due the semi-empirical approach to the 
theory of turbulence. The semi-empirical theories originate from the analogy 
between turbulence and molecular disorder. These theories do not form a 
single basis and are rather based on simple assumptions of analogy or 
similarity, and on experimental results, than on theoretical models of the 
dynamics of turbulence. The original fundamental concepts included mixing 
length, turbulent intensity, and turbulent (eddy) viscosity coefficients. The 
results are immediately usable, both in engineering flows, such as in pipes, 
open channels and in boundary layers, and in flows of theoretical interest 
such as in free turbulence, i.e. in absence of fixed impermeable walls. The 
possibilities of the semi empirical method are not yet exhausted and useful 
work in this direction is still developing at the present days.  
Taylor also gave a fundamental conceptual contribution, postulating the 
probabilistic nature of turbulence, considering the turbulent hydrodynamic 
variables as random variables for which probability density functions should 
be determined. He introduced the investigation, developed by his disciples 
Batchelor (1920-2000) and Townsend (1917-2010), on isotropic and homo-
geneous turbulence. In thirty years (1930-1960), was developed the statistical 
formulation, which obtained interesting results, but at the same time showed 
the difficulties of framing the turbulent phenomenon with simple theories, 
even using techniques other than those commonly used in Fluid Mechanics. 
The state of knowledge is well represented by Batchelor, Townsend, Hinze 
(1907-1993) and, with a clearer and more precise approach, by Monin (1921-
2007) and Yaglom (1921-1988). The greatest contribution in that period was 
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given by A.N. Kolmogorov (1903-1987) on the local structure of turbulence. 
In the early 60s, first Kraichnan (1928-2008) and then Edwards (1928-2015) 
applied the field theory techniques of Quantum Mechanics. The results, 
however, were, and still are, purely formal and of little use for the concrete 
resolution of engineering problems. The formal analogy of the field theory 
of Quantum Mechanics had been, on the other hand, already present in 
Landau’s (1908-1968) approach.  
Thus at the end of the 1960s it was commonly accepted that the complexity 
of turbulent motion was due to the excitation of a large number of degrees 
of freedom and therefore it could be and should be expressed by a large 
number of differential equations. On the contrary, in the laminar motion the 
excited degrees of freedom would be very few.	We can describe the motion 
of a continuous medium by means of an infinite number of generalized 
coordinates, i.e. by means of the coefficients of the expansion of the velocity 
field with respect to a complete system of functions. In other words, the 
velocity vector field can be expressed as a linear combination of assigned, 
linearly independent, velocity vector fields. The coefficients of the 
combination represent the coordinates relative to the representation basis. 
The coefficients can assume different values with time, generating 
trajectories in the representation space. A possible system of ordinary 
differential equations, which represents a model of time evolution, must 
have a number of degrees of freedom, i.e. a number of differential 
equations, equal to the dimensions of the representation space. For a 
laminar flow, almost all the coefficients would be negligible, only very few 
would not be negligible and the corresponding degrees of freedom excited. 
For a turbulent flow a great number of degrees of freedom would be excited 
and the resulting motion would be extremely complex.  
Nevertheless, in the early 1960s, the American meteorologist Lorenz (1917-
2008) showed that even simple systems of nonlinear ordinary differential 
equations may have solutions with a chaotic behaviour, not due to the 
influence of a large number of non-controllable factors, but due to the 
nature of the system of equations. This observation paved the way for the 
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chaos theory approach to turbulence, according to which motions with very 
close initial conditions evolve in a completely different way. Ruelle (1935-) 
and Takens (1940-2010) assumed that this is what happens in turbulent 
flows,	 introducing new attractors, called s trange at trac tors , of the solutions 
of nonlinear dynamical systems.  
The chaos theory approach to turbulence has been developed in order to 
obtain the asymptotic behaviour of solutions of nonlinear differential 
equations systems (dynamic systems) and to investigate the existence of 
discontinuous solutions (bifurcation theory). With this regard, the availability 
of computational resources is a key factor and in the last decades many 
important results in specific applications have been obtained thanks to the 
tremendous development of computational resources and methods. 
However, the turbulent mechanism as a whole is still wrapped up in 
mystery, even though concrete results have been achieved in specific 
applications. The methodological tools used to obtain results in the study 
of turbulent motion are based on dimensional analysis, experimental 
prototypes and numerical models. More recently, important developments 
have been obtained thanks to Computational Fluid Dynamics (CFD).  
From the fall of water described by Leonardo da Vinci and from the first 
scientific experiments of Reynolds until today, turbulence continues to be 
the subject of study and research. Turbulence is still an open problem in 
many respects and research on it is continuously in progress.  
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Figure 1.1 Leonardo da Vinci: Water passing obstacles and falling.	

Source: https://it.m.wikipedia.org/wiki/File:Studies_of_Water_passing_Obstacles_and_falling.jpg 
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CHAPTER 2   HYDRODYNAMIC STABILITY  
 
 
2.1.  Instability phenomena 
 
If a steady, uniform flow impinges on a flat plate, the boundary layer is 
steady too in the neighborhoods of the leading edge of the plate, but 
moving from the leading edge, the flow becomes gradually unsteady. In 
other words, at a given distance from the leading edge the flow quantities 
(velocity, pressure, etc.) oscillate with respect to both time and space. The 
oscillations of the flow quantities become more and more complex 
increasing the distance from the leading edge of the plate, until they appear 
completely chaotic and the flow is considered turbulent. It is evident that 
the steady boundary layer solution, obtained from the Navier-Stokes 
equation, does not represent the flow behavior at all.  
This behavior can be seen in the Poiseuille flow too: the well-known 
parabolic velocity profile in the pipe is steady until the dimensionless 
parameter: 
 

 
𝑅𝑒 =

𝑈! ℎ
𝜈  

 
 (2.1) 

 
is small enough. In equation 2.1, 𝑈! , ℎ and 𝜈 are the flow velocity-scale 
(e.g. the cross section average velocity of the steady velocity profile), the 
flow characteristic length-scale (e.g. the diameter of the pipe) and the 
kinematic viscosity of the fluid. On the contrary, as soon as the 
dimensionless parameter, known as Reynolds number in honor of Osborne 
Reynolds, is large enough, time and space fluctuations affect the flow 
quantities. It is important to observe that these fluctuations occur only if the 
Reynolds number is large enough, but the way with which these fluctuations 
affect the flow depends on the value of the Reynolds number. The steady 
flow in a pipe is always a solution of the steady Navier-Stokes equation, 
whatever the Reynolds number, but it is unstable for high values of the 
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Reynolds number. This means that even small perturbations are amplified, 
instead of being damped out and so the actual flow evolves in a different 
way, with respect to that foreseen by the steady solution. 

 

	
 

Figure 2.1: A capillary jet breaking into droplets (Rayleigh-Plateau Instability). 
Source: 

https://commons.wikimedia.org/wiki/Category:Plateau-Rayleigh_instability#/media/File:Dripping_ 
faucet_2.jpg 

 
Instability phenomena are common and frequent, as for example a capillary 
jet breaking into droplets (instability of Rayleigh-Plateau, figure 2.1), where 
the surface tension plays an important role; the flow in a single continuous 
fluid with velocity shear or in two fluids with velocity difference at the 
interface (instability of Kelvin-Helmholtz, figure 2.2); density driven flows 
(instability of Rayleigh-Taylor) etc.  
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Figure 2.2: Computational (top) and experimental (bottom) Kelvin-Helmholtz instability  
in a gravity current. 

The shear flow instability or Kelvin-Helmholtz instability is the most studied 
instability phenomenon. A shear flow is characterised by the fact that the 
velocity changes mostly with respect to the spatial coordinate perpendicular 
to the main direction of the flow. Examples of shear flows are the Poiseuille 
flow and the boundary layer. Kelvin-Helmholtz instability occurs when two 
fluid layers of the same fluid or of different fluids flow with different 
velocities 𝑢!, 𝑢!; i.e. they have a discontinuity in the velocity profile (figure 
2.3). 
 

 
 
Figure 2.3: Discontinuity of the velocity profile at the separation surface of two fluid layers. 
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The justification for the Kelvin-Helmholtz instability, which had been given 
originally by some scientists in the XIX century based on hydrodynamic 
considerations and their knowledge, is the following. Let us consider the 
fluid as ideal (not viscous) and a frame of reference moving with the average 
velocity 𝑢! of the two layers: 𝑢! = 𝑢! + 𝑢! 2. In this frame the fluid layers 
move away with opposite velocities 𝑢! − 𝑢! , 𝑢! − 𝑢!, being 𝑢! > 𝑢!, while the 
separation surface 𝜓 = 0 is a discontinuity surface. Let us suppose that a 
perturbation modifies the separation surface 𝜓 = 0 , so that the latter 
becomes a wavy surface (figure 2.4). Of course, the perturbation is 
extinguished moving from the separation surface 𝜓 = 0 , but in its 
neighbourhoods the streamlines are compressed in the convexities and 
thinned out in the concavities (figure 2.4). Assuming that the flow is steady, 
the pressure distribution along the separation surface 𝜓 = 0, according to the 
Bernoulli’s equation, increases in the concavities (the plus sign in figure 2.4), 
where the velocity decreases, and decreases in the convexities (the minus 
sign in figure 2.4), where the velocity increases, hence enhancing the 
waviness of the separation surface and making the flow unsteady.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.4: Wavy perturbation on the separation surface                                                 
between two fluid layers traveling at different velocities. 
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In real, viscous fluids, the velocity discontinuity appears as a flex in the 
velocity profile, whose gradient is large in the so-called mixing layer around 
the discontinuity surface 𝜓 = 0 and vanishing far from the latter (figure 2.5). 
Within the mixing layer, whose thickness increases along the direction of the 
flow, also the vorticity is very large and the dimensions of the vortices 
increase along the direction of the flow (figure 2.5).  
 

 
 

Figure 2.5: The mixing layer around the separation surface 
between two fluid layers traveling at different velocities. 

 
Source: On density effects and large structure in turbulent mixing  layers,  Garry L. Brown and Anatol Roshko, 
Journal of Fluid Mechanics, Volume 64, Issue 04, July 1974, pp. 775­816, DOI: 10.1017/ 
S002211207400190X. 

 
The boundary layers with pressure gradients can have a “favourable” 
gradient, if the pressure decreases in the flow direction, or “adverse” 
gradient, if the pressure increases in the flow direction. The adverse pressure 
gradient provides an inflection point in the velocity profile.  
The presence of flexes occurs in boundary layers too, when the flow 
separate from the surface. As shown in figure 2.6 when the velocity profile 
has a flex (profile C), the streamlines starts separating from the surface.  
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Figure 2.6: Separation of the boundary layer on a curved surface.  

 

 
Figure 2.7: Von Karman Vortices resulting from Kelvin-Helmholtz instability in the wake 
downstream of a square cylinder, side l. Red: negative vorticity; light blue: positive vorticity. 
It is evident the generation and alternate detachment of the vortices downstream of the 
square cylinder. 

 
Jets and wakes present flexes in velocity profiles too: that is why Kelvin-
Helmholtz instabilities occur at the boundary of jets and wakes (figure 2.7). 
As shown by Tollmien, in case of inviscid fluid flows, the presence of flexes 
in the velocity profile, as for jets or wakes, is a necessary condition, although 
not sufficient, for instability (Rayleigh’s inflexion-point theorem).  
Viscosity has generally a stabilizing effect, i.e. a damping effect on 
perturbations: this is the reason why, if the Reynolds number is small 
enough, the steady flow is stable, while it can become unstable for larger 
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Reynolds numbers even without inflection points in the velocity profile. In 
the latter case the viscosity determines the stability or not and it is therefore 
necessary to consider the viscosity in the stability analysis (Lin, 1955). 
 
 
2.2.  Linear Stability Analysis 
 
In order to get qualitative information on the onset of instability and to give 
indications on the consequent flow, the theory of linear stability is the 
simplest and the most effective. The basis of this theory consists in 
considering the transition from one flow to another as the result of an 
amplification of small perturbations superimposed on an initial equilibrium 
state. The main idea of the linear theory is that the perturbations have to be 
small, with infinitesimal amplitude. Hence, the main limit of the linear 
theory is that it can only give a qualitative indication on the evolution of a 
considered flow subjected to small perturbations, while it cannot predict 
what happens when the perturbations become of finite amplitude. It is 
evident that a flow, which is stable, when subjected to infinitesimal 
perturbations, may become unstable when subjected to perturbations of 
finite amplitude. A flow that is unstable when subjected to infinitesimal 
perturbations is surely unstable when subjected to perturbations of finite 
amplitude.  
The theory of linear stability consists of imposing on a given flow a small 
perturbation and in investigating if the amplitude of this perturbation 
amplifies or damps as time goes by.  
 
2.2.1  Systems of first order ordinary differential equations 
In order to explain how this theory works, let us consider a non-linear, first 
order, system of 𝑛 ordinary differential equations: 
 

 𝑑𝑦!
𝑑𝑡 = 𝑓! 𝑦!,𝑦!,… ,𝑦!;Π ,   𝑖 = 1,2,… ,𝑛 

 
 (2.2) 
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Where Π is a dimensionless parameter, e.g. the Reynolds number. The 𝑛 
functions 𝑓! are assumed of class 𝐶!. Let 𝑦!!, 𝑦!!,… , 𝑦!! be a steady, equilibrium 
solution, obtained for Π = Π!: 

 
 𝑓! 𝑦!!,𝑦!!,… ,𝑦!!;Π! = 0,   𝑖 = 1,2,… ,𝑛  (2.3) 

 
Let us superimpose a perturbation 𝑥! = 𝑥! 𝑡  (𝑖 = 1,2,… , 𝑛)  on the steady 
equilibrium solution 𝑦!!, 𝑦!!,… , 𝑦!! . The evolution of this perturbation is 
governed by the equations:  
 

 𝑑𝑥!
𝑑𝑡 = 𝑓! 𝑥! + 𝑦!!, 𝑥! + 𝑦!!,… , 𝑥! + 𝑦!!;Π! ,   𝑖 = 1,2,… ,𝑛 

 
(2.4) 

 
Let us expand in Taylor series the right hand side of equations 2.4, 
considering the steady equilibrium solution as initial point:  
 
 𝑑𝑥!

𝑑𝑡 =
𝜕𝑓!
𝜕𝑦! !!!!!

!
𝑥! +

1
2

𝜕!𝑓!
𝜕𝑦!𝜕𝑦! !!!!!

!
𝑥!𝑥! +⋯    

 
 𝑖 = 1,2,… ,𝑛 

 
 (2.5) 

   
Einstein’s convention has been adopted in equations 2.5 for the sum of 
quantities having the same indices. Equations 2.5 are more conveniently put 
in matrix form: 
 

 𝑑𝐱
𝑑𝑡 = 𝕁𝐱+ 𝐫 

 
 (2.6) 

 
The term 𝕁𝐱 is the first order term. The elements 𝐽!"  of the matrix 𝕁 are 
defined as: 
 
 

 
𝐽!" =

𝜕𝑓!
𝜕𝑦! !!!!!

!
 

 
(2.7) 
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while 𝑥!  (𝑖 = 1,2,… , 𝑛)  are the elements of the vector 𝐱. Terms of order 
higher than the first are represented by the vector 𝐫. Considering small 
perturbations, the ratio 𝐫 𝐱  is negligible. Within this limit, the nonlinear 
differential system 2.5 can be linearized i.e. the high order terms represented 
by vector 𝐫 can be neglected: 
 

 𝑑𝐱
𝑑𝑡 = 𝕁𝐱 

 
(2.8) 

 
The solution of the linearized differential system 2.8 can be sought in the 
form: 
 

 𝐱 = 𝐱!𝑒!" (2.9) 
   

𝐱! is the amplitude of the perturbation. Let us substitute the solution 2.9 in 
the linearized system 2.8. The following algebraic homogeneous system is 
obtained:  
 
 𝕁− 𝜎𝕀 𝐱! = 0 (2.10) 
 
where 𝕀 is the 𝑛×𝑛 identity matrix. The algebraic homogeneous system 2.10 
has a nontrivial solution (𝐱! ≠ 0) if the determinant of the matrix 𝕁 − 𝜎𝕀 
vanishes. This condition consists of an algebraic equation of 𝑛!! degree. The 
𝑛 roots of this equation are the eigenvalues of the matrix 𝕁: they are complex 
numbers and can be expressed as: 
 
 𝜎 = 𝜎! + 𝐼𝜎! (2.11) 
 
Being 𝐼  the imaginary unit 𝜎! ,𝜎!  are the real and imaginary part of the 
eigenvalue 𝜎 respectively. The solution of the linearized differential system 
2.8 is a linear combination of 𝑛 exponential functions, each relative to the 𝑖!! 
eigenvalue. It follows that, if even only one eigenvalue has the real part 
positive (𝜎! > 0), the perturbation increases indefinitely and the equilibrium 
solution is unstable. On the contrary, if the real part of every eigenvalue is 
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negative (𝜎! < 0), the perturbation decreases indefinitely and the equilibrium 
solution is stable. Finally, if at least the real part of one eigenvalue vanishes, 
being the others negative, the perturbation does neither decrease, nor 
increase and the equilibrium solution is marginally stable.  
 

2.2.2  The governing equations of a small disturbance to the flow 
The continuity and the Navier-Stokes equations for an incompressible fluid 
subjected to gravity assume the following form: 
 

𝛁 ∙ 𝐮 = 0,    !𝐮
!"
+ 𝐮 ∙ 𝛁𝐮 = −𝑔𝛁𝜁 + !

!
𝛁𝟐𝐮               (2.12) 

Where 𝜁 is the piezometric height (𝜁 = !
!"
+ 𝑥!).  

Assume that 𝐮, 𝜁 are solutions of equations (2.12). 

Let us add perturbations 𝐮′, 𝜁′ to the solutions 𝐮, 𝜁, substitute the sum into 
equations (2.12), imposing that it is still a solution. We get:   
 
𝛁 ∙ 𝐮! = 0,    !𝐮

!

!"
+ 𝐮! ∙ 𝛁𝐮+ 𝐮 ∙ 𝛁𝐮! + 𝐮′ ∙ 𝛁𝐮′ = −𝑔𝛁𝜁′+ !

!
𝛁𝟐𝐮′  (2.13) 

The linear approximation of the Navier-Stokes equation, valid provided that 
the perturbations 𝐮′, 𝜁′  are infinitesimal, consists in neglecting the 
convective term 𝐮′ ∙ 𝛁𝐮′  in the Navier-Stokes equation. Thus we get the 
linearized Navier-Stokes equation:  
 

!𝐮!

!"
+ 𝐮! ∙ 𝛁𝐮+ 𝐮 ∙ 𝛁𝐮! = −𝑔𝛁𝜁′+ !

!
𝛁𝟐𝐮′               (2.14)  

whose solutions can be considered approximations of those of equations 
(2.13), provided that the perturbations 𝐮′, 𝜁′ are infinitesimal.  
We can consider the perturbations 𝐮′, 𝜁′  as the sum of spatial Fourier 

modes: 

𝐮! = 𝐮!𝐤𝒆!𝐤∙𝐱𝐤 ,           ζ! = ζ!𝐤𝒆
!𝐤∙𝐱

𝐤                    (2.15) 

Where 𝐤 is the wavenumber vector and 𝐱 is the position vector. 
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The time-dependent amplitudes of the Fourier mode, 𝐮!𝐤, ζ!𝐤 , are  complex 

numbers. However, as 𝐮′, 𝜁′ are real, the sums (2.15) are such that for each 
term they also include the complex conjugate, so that the final result is real. 
The absence of the nonlinear term in the linearized Navier-Stokes equation 
(2.14) makes that each Fourier mode evolves over time independently of the 
other modes. 
The time-dependent variables are the amplitudes 𝐮!𝐤, ζ!𝐤  of the Fourier 

modes and their temporal evolution is governed by equations (2.14). The 
wave vector is considered as a parameter.  
It is usual to assume an exponential temporal behaviour for the amplitudes 
𝐮!𝐤, ζ!𝐤 of the Fourier modes: 
 

𝐮!𝐤 = 𝐮!𝐤𝟎𝒆!!!𝒆! 𝐤∙𝐱!!!! ,   ζ!𝐤 = ζ!𝐤𝟎𝒆
!!!𝒆! 𝐤∙𝐱!!!!         (2.16) 

 
Where 𝐮!𝐤𝟎 and ζ!𝐤𝟎 are the values of  𝐮!𝐤 and ζ!𝐤 for 𝑡 = 0 and 𝐱 = 0.  

According to (2.16), each Fourier mode oscillates with  !!
!!

 and amplifies or  

decreases with time depending on the sign of 𝜎! . The linearized governing 
equation 2.14 becomes the evolution equation of the amplitudes, which vary 
with the wave number, but do not depend on the spatial variables. 
The linear stability analysis mentioned up to now consists, for each 
wavevector, in determining the parameter 𝜎! and therefore in deducing the 
temporal behaviour of the perturbations (stability analysis by means of the 
initial value of normal modes).  
A simple consideration allows the results of the linear stability analysis to be 
verified experimentally and computationally.  
We assume that the velocity vector is aligned with the 𝑥! axis and rewrite 
expressions (2.16) in the following way: 
 

𝐮!𝐤 = 𝐮!𝐤𝟎𝒆!!!𝒆
! !! !!!

!!
!!
! !!!!!!!!!! ,   

ζ!𝐤

 

= ζ!𝐤𝟎𝒆
!!!𝒆! !! !!!

!!
!!
! !!!!!!!!!!  

             (2.17) 
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We introduce the new coordinate: 𝑥!∗ = 𝑥! +
!!
!!
𝑡. A constant value of 𝑥!∗ 

moves upstream along the old 𝑥! coordinate with velocity 𝑐! =
!!
!!

.  Thus a 
perturbation, periodic in time with period 𝑇 = !!

!!
, moves upstream along 

 the 𝑥! direction with velocity 𝑐! and it becomes periodic in space along the 
𝑥! coordinate with wavelength 𝑐!𝑇 and amplitude increasing or decreasing 
according to the sign of  𝜎! . In this way what happens in time is represented 
in space and the experimental verifications can be performed.  
This approach is obtained also setting 𝜎! = 0  and considering the 
wavenumber complex (stability analysis by means of spatially growing 
modes).  
However, both the stability analysis by means of the initial value of normal 
modes and spatially growing modes would lead to exhausting computational 
evaluations in order to consider all possible flows. Fortunately, the flows to 
be studied are often simple and allow us to assume useful simplifications in 
setting the problem. The linear stability analysis of plane incompressible 
flows, as we will see, can be performed through the Orr-Sommerfeld 
equation, which is further simplified to the Rayleigh’s equation if the fluid 
can be considered as inviscid. 

 
 
2.3.  Orr-Sommerfeld equation 

 
Let us extend the theory of linear stability to investigate the stability of a 
given incompressible, 2D, equilibrium flow occurring in the 𝑥𝑦 plane. The 
vorticity is a vector perpendicular to the 𝑥𝑦 plane, whose modulus 𝜔 is 
governed by the equation: 
 

 ∂𝜔
∂𝑡 + 𝑢

∂𝜔
∂𝑥 + 𝑣

∂𝜔
∂𝑦 =

1
𝑅𝑒 ∇

!𝜔  (2.18) 
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Equation 2.18 is in dimensionless form. The theorem of Squire (1933) 
shows that every unstable three-dimensional disturbance corresponds to a 
more unstable two-dimensional disturbance. Thus even the disturbances can 
be considered two-dimensional. Let us express the vorticity modulus 𝜔 and 
the velocity components 𝑢, 𝑣, as the sum of the equilibrium solution and the 
perturbation:  
 
 𝑢 = 𝑈 + 𝑢!, 𝑣 = 𝑉 + 𝑣!,𝜔 = Ω+ 𝜔′   (2.19) 

 Let us substitute the expressions 2.19 into the vorticity equation 2.18:  
 
∂Ω
∂𝑡

+
∂𝜔′
∂𝑡

+ 𝑈 + 𝑢!
∂ Ω + 𝜔′

∂𝑥
+ 𝑉 + 𝑣!

∂ Ω + 𝜔′
∂𝑦

=
1
𝑅𝑒

∇! Ω + 𝜔′  (2.20) 

 
 
The equilibrium solution satisfies the equation:  
 
 ∂Ω

∂𝑡
+ 𝑈

∂Ω
∂𝑥

+ 𝑉
∂Ω
∂𝑦

=
1
𝑅𝑒

∇!Ω   (2.21) 

 
Thus the perturbation satisfies the equation:  
 
∂𝜔′
∂𝑡

+ 𝑈
∂𝜔′
∂𝑥

+ 𝑢!
∂ Ω + 𝜔′

∂𝑥
+ 𝑉

∂𝜔′
∂𝑦

+ 𝑣!
∂ Ω + 𝜔′

∂𝑦
=

1
𝑅𝑒

∇!𝜔′ (2.22) 

 

Assuming that the perturbation quantities are small with respect to the 
equilibrium ones, equation 2.22 can be linearized, i.e. products of 
perturbations quantities can be neglected:  
  
 ∂𝜔′

∂𝑡
+ 𝑈

∂𝜔′
∂𝑥

+ 𝑢!
∂Ω
∂𝑥

+ 𝑉
∂𝜔′
∂𝑦

+ 𝑣!
∂Ω
∂𝑦

=
1
𝑅𝑒

∇!𝜔′   (2.23) 
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Let us focus on a 2D flow such that: 
 

𝑈 = 𝑈 𝑦 , 𝑉 = 0, Ω = −
𝑑𝑈
𝑑𝑦    (2.24) 

The perturbation could be 3D but the Squire’s theorem (1933) states that 
the critical Reynolds number occurs for two-dimensional perturbations. So 
we can restrict the analysis to these ones and to express the perturbation 
velocity components by means of a stream function: 
 
                                              𝜓 = 𝜓 𝑥,𝑦, 𝑡 :                                       (2.25) 
 
and the only not vanishing component of the perturbation  vorticity  can  be 
expressed in terms of the perturbation velocity components as: 
 

𝑢′ = !!
!!
, 𝑣′ = − !!

!!
  ⇒  𝜔 = − !!!

!!!
+ !!!

!!!
               (2.26) 

Then equation 2.21 becomes: 

 ∂∇!𝜓
∂𝑡 + 𝑈

∂∇!𝜓
∂𝑥 −

∂𝜓
∂𝑥

𝑑!𝑈
𝑑𝑦! =

1
𝑅𝑒 ∇

!𝜓   (2.27) 

 
Equation 2.21 is the linearized vorticity equation, expressed in terms of the 
known equilibrium velocity profile  𝑈 = 𝑈 𝑦 and the unknown stream 
function. The latter can be expressed as: 
 
 𝜓 = Φ 𝑦 𝑒! !! !!!"    (2.28) 
 

The structure of the function 2.28 is a traveling wave along direction 𝑥, with 
celerity 𝑐  and wavenumber 𝑘! , corresponding to the wave length 𝜆!                 

( 𝜆! = 2𝜋 𝑘!). The amplitude of the wave is the unknown function Φ = Φ 𝑦 , 
which has to be determined by solving equation 2.27. Substitution of the 
expression 2.28 into equation 2.27 gives: 
 
 

𝑐 − 𝑈
𝑑!

𝑑𝑦! − 𝑘!
! +

𝑑!𝑈
𝑑𝑦! Φ =

𝐼
𝑘!𝑅𝑒

𝑑!

𝑑𝑦! − 𝑘!
!

!

Φ   (2.29) 
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Equation 2.29 is the Orr-Sommerfeld equation. It is a fourth order, linear, 
ordinary differential equation with non-constant coefficients. Non trivial 
solution Φ (i.e. Φ ≠ 0) are defined eigenfunctions of the Orr-Sommerfeld 
equation and exist for well defined values of 𝑐, defined as eigenvalues of the 
Orr-Sommerfeld equation, given the wavelength 𝑘!  and the Reynolds 
number 𝑅𝑒.  
Boundary conditions have to be imposed. Let us assume that at 𝑦 = 0 and at 
𝑦 = 𝐻 there are two solid walls: it follows that at 𝑦 = 0 and at 𝑦 = 𝐻, 𝑢!, 𝑣′ 
vanish. In terms of the function Φ: 
 

𝑢′ !!!,! =
∂𝜓
∂𝑦 !!!,!

=
𝑑Φ
𝑑𝑦 !!!,!

𝑒! !! !!!" = 0 ⇒  
𝑑Φ
𝑑𝑦 !!!,!

= 0 

 

𝑣′ !!!,! = −
∂𝜓
∂𝑥 !!!,!

= −𝐼𝑘!Φ !!!,!𝑒! !! !!!" = 0 ⇒  Φ !!!,! = 0 

(2.30) 

Given the wavelength and the Reynolds number, the eigenvalues of the Orr-
Sommerfeld equation characterize the stability of the equilibrium solution. 
They are complex numbers. According to the structure 2.28 of the perturba-
tion, the stability properties are determined by the imaginary part of the 
eigenvalues. If, given the wavelength and the Reynolds number, all of the 
eigenvalues have negative imaginary part, the perturbation is damped and 
the equilibrium flow is stable, while if even one eigenvalue has positive 
imaginary part, the perturbation is amplified and the equilibrium flow is 
unstable. If we set 𝑅𝑒 = ∞ in the Orr-Sommerfeld equation, the right hand 
side vanishes and an equation valid for inviscid fluids, known as Rayleigh's 
equation, is obtained. This reduced equation has been studied for a long 
time, obtaining theorems as the already cited Rayleigh’s inflexion-point 
theorem or the Fjortoft’s theorem stating that the magnitude of vorticity of 
the basic flow must have a maximum within the region of flow, not at the 
boundary.  
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2.4.  Marginal stability curves 
 
It is usual to represent the stability characteristics of the equilibrium flow by 
means of stability curves in the 𝑘! ,𝑅𝑒 plane. These curves are also known as 
marginal stability curves and represent the condition when at least one 
eigenvalue has vanishing imaginary part and the imaginary parts of the other 
eigenvalues are negative. The marginally stability curves separate the 
instability from the stability zones. Typical shapes of the marginal stability 
curves are shown in figure 2.8. The dashed curve is relative to a flow with a 
flex in the velocity profile, while the solid curve is relative to a velocity 
profile without flex. In fact, the stability theory predicts stability for an ideal 
fluid flow (𝑅𝑒 → ∞) without flex in the velocity profile, while it predicts 
instability for an ideal fluid flow (𝑅𝑒 → ∞) with flex in the velocity profile. In 
both cases (solid and dashed curve), there is a critical Reynolds number 𝑅𝑒!", 
i.e. a minimum value of the Reynolds number at which the instability occurs. 
A critical vanishing wave number (𝑘!" = 0) can occur only if the fluid 
domain – and then the largest wavelength – is unlimited. The value of the 
critical Reynolds number depends on the considered flow: for the Poiseuille 
flow 𝑅𝑒!" = 5770, while for the flow within a pipe with circular section 
𝑅𝑒!" ≈ 2000 ÷ 2500.  
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Figure 2.8: Typical shapes of the marginal stability curves in the 𝑘! ,𝑅𝑒 plane. 

 
Two types of instability mechanisms can be identified: inviscid instabilities 
with a flex in the velocity profile, where viscosity is not important in the 
onset of turbulence, and viscous instabilities, where viscosity plays a crucial 
role in the transition to turbulence.	 In the first category, the presence of 
inflection denotes the presence of maximum vorticity within the flow. This 
situation is unstable: vortices arise continuously, increase their intensity and 
generate other vortices, whose characteristic length is smaller than that of 
the generating ones. As a consequence, a generation of smaller and smaller 
vortices occurs. Viscosity plays no role in this process; it becomes effective 
only in the final stage.  
In the second category, the vorticity does not achieve a maximum within the 
flow but, as in the Poiseuille or the Couette flow, it does on the boundary. 
Vorticity here does not play a prominent role in the initial instabilities, while 
the viscosity does. This is contrary to expectations as we think to viscous 
effects as of dissipative nature and therefore inherently stabilizing.	 The 
reason is that fluctuations in viscous stresses, caused e.g. by a wave 
disturbance, can present phase delays that overlap the wave disturbance, 
amplifying it by means of a resonance-like phenomenon. 
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An interesting example of viscous instability is that which occurs in the 
laminar boundary layer as the Reynolds number increases. The case of the 
boundary layer on a flat plate is particularly interesting, because the 
Reynolds number increases locally with the spatial coordinate defined along 
the flat plate. It follows that the boundary layer becomes unstable only after 
a given position on the flat plate, where the value of the local Reynolds 
number is greater than the critical value. At low Reynolds numbers, the 
viscous forces are so strong that they dampen any disturbances in the flow 
and thus the boundary layer remains laminar. As the Reynolds number 
increases, inertial effects grow and become dominant causing boundary layer 
flow instability. Above the Reynolds critical number, arise the two-
dimensional perturbations of the boundary layer, known as Tollmien-
Schlichting waves, traveling in the main direction of the flow. These waves 
are slowly amplified as they travel downstream until they become so large 
that non-linearities take over. In flows starting with almost no natural 
velocity fluctuations, turbulence is initiated by these waves. The Tollmien-
Schlichting waves are defined as the most unstable eigen-modes of the Orr-
Sommerfeld equations. 
Schubauer e Skramstad in a famous experiment performed in 1947 in a low 
velocity wind tunnel have proved this fact (figure 2.9). 

 

	
Figure 2.9: Stable and unstable boundary layer on a flat plate.  

In both cases, the so-called Tollmien-Schlichting waves are visible. 

Source: Physical Fluid Dynamics, Tritton, D. J. Springer, 1977,                                                         
ISBN 10: 0442301324ISBN 13: 9780442301323. 
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The resolution of the hydrodynamic stability problem allows to determine 
the onset/triggering of the transition mechanism to turbulent flow but does 
not answer the crucial question of how random turbulent fluctuations 
develop from oscillatory laminar flows 
Among the different scenarios of transition to turbulence, the one proposed 
by Landau (1944) and Hopf (1948), the most accredited until the mid-1970s 
(until the discover of the strange attractors), states that as the Reynolds number 
increases, after the first unstable mode, an increasing number of unstable 
Fourier modes develops. Among the unstable modes there are couples, 
whose ratios between the periods of oscillation are irrational and whose 
superposition is not periodic but quasi-periodic. This means that the 
sequence of values never repeats exactly.  
From the mathematical point of view a bifurcation occurs when, for a given 
value of a relevant parameter, several different solutions develop, e.g. 
passing from a stationary to one or more periodic solutions. The bifurcation 
theory arose with J.H. Poincaré (1854-1912) and then became the subject of 
intense research by V. Arnold, J. Marsden and other researchers. The 
representation of the characteristic properties of the solutions of the motion 
equations in terms of the governing parameters, as the Reynolds number, 
constitutes the bifurcation diagram. As the governing parameters vary, 
bifurcations follow one another in a process known as the Feigenbaum 
cascade, after the american physicist M. J. Feigenbaum.	 According to 
Landau, the process of transition to the turbulent regime is interpreted as a 
sequence of successive bifurcations of the solution of the motion equations. 
Some of the solutions downstream of a bifurcation may be unstable, from 
which it can be inferred that flow instability can be interpreted as a 
bifurcation of the analytical solution. Representing the flow as a super-
position of travelling waves (equation 2.28), the number of bifurcations 
rapidly increases, thus determining the chaotic behaviour, whose representa-
tion requires a suitably high number of waves. This scenario has been 
questioned by the discovery of dynamic systems, which exhibit chaotic 
behaviour even with a very low number of waves (strange attractors theory). 
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CHAPTER 3   CHARACTERISTICS OF TURBULENT FLOWS  
 
 
3.1.  Laminar and turbulent flow  
 
Let us imagine a flow with steady boundary conditions, whose viscosity can 
be changed. It is known that, if the viscosity is high enough and consequently 
the Reynolds number is low enough, the flow is steady, but as soon as the 
viscosity assumes low values and consequently the Reynolds number becomes 
high enough, even if the boundary conditions are steady, the flow becomes 
unstable and unsteady. As the Reynolds number increases, the flow becomes 
extremely irregular and chaotic. The velocity components oscillate without 
any regularity and the pathlines of two fluid particles, which were very close at 
the beginning of motion, are extremely different and twisted. This process is, 
in a nutshell, the laminar-turbulent transition. In figure 3.1 a turbulent flow in 
a diverging channel is made visible by means of small hydrogen bubbles, 
injected into the flow, which follow the fluid particle.   
  

 
  

Figure 3.1: Typical disordered and chaotic turbulent water flow made visible  
by means of small hydrogen bubbles. 

Source: https://armfield.co.uk/wp-content/uploads/2020/03/C16_Datasheet_v2e_ web.pdf. 
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The word turbulent evokes something messy, irregular and chaotic. On the 
contrary, the word laminar means well ordered, regular and predictable. 
These are not rigorous definitions of laminar and turbulent flows. A more 
rigorous approach refers to the role of the initial conditions. Indeed, if the 
viscosity is sufficiently high, i.e. if the Reynolds number is sufficiently small, 
starting from any initial conditions, the flow, after a transient, will tend to a 
state depending only on the boundary conditions and independent of the 
initial conditions. This flow is laminar. For smaller viscosity values, i.e. for 
greater Reynolds numbers, the transient lengthens without limit: this means 
that the flow depends not only on the boundary conditions but also on the 
initial conditions. For even smaller viscosity values and correspondingly 
larger Reynolds numbers, the flow will depend strongly on the initial 
conditions. This flow is turbulent. In actual flows it is unavoidable that small 
variations of the initial conditions occur in different experiments with the 
same Reynolds number and boundary conditions. Then if the influence of 
the initial conditions is strong, even in the same experiment two originally 
very close fluid particles with different initial conditions develop very 
different trajectories. In conclusion, the difference between a laminar or 
turbulent flow can be seen in the vanishing or strong dependence of the 
flow on the initial conditions.  
From an analytical point of view, the Navier-Stokes equation is a valid tool 
in investigating turbulent flows, as it has been proven that, under 
appropriate hypotheses generally verified in most cases, their solution is 
unique. Therefore a laminar flow corresponds to the stable asymptotic 
solution of the equation,	 not dependent on initial conditions; while a 
turbulent flow corresponds to an infinite transient of the solution,	 always 
dependent on the initial conditions2. The problem for turbulent flows is the 
exact knowledge of the initial conditions. 
From a phenomenological point of view, any scenario that attempts to 
interpret the turbulent phenomenon must consider experimental evidences. 

																																																								
2 In this regard, see Joseph B.D. Stability of Fluid Motions, Spriger Verlag, 1975. 
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The consolidated experimental data indicate that the turbulent flow is three-
dimensional and rotational with vorticity also irregularly and disorderedly 
distributed in the three spatial directions. The mixing and diffusion pro-
cesses are highly developed. Fourier analysis of kinematic and dynamic 
variables of turbulent flows shows that frequency or wavenumber spectra 
tend to depend with continuity on frequency or wavenumber, indicating that 
there is no temporal or spatial periodicity. The autocorrelation coefficients 
of the turbulent quantities tend to zero rapidly with the increase of the phase 
shift, as happens with the random variables, not allowing reliable predictions 
on the future trend of the variables from the knowledge of the past trend.  
 
 
3.2.  Developed turbulence and predictability  
 
Let us consider the measurement of any velocity component, performed at a 
given point during a sufficiently large time interval (figure 3.2).  
 

 
Figure 3.2: Measurement of u,v,w velocity components in a turbulent open channel flow. 
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The frequency spectrum of the time history of the velocity component 
shown in figure 3.2 can be obtained by means of the Fourier analysis. If the 
spectrum consists of a continuous distribution of frequencies, the flow can 
be considered to be turbulent, while if isolated peaks are present, the flow is 
periodic (or quasi-periodic)3 and predictable. 
The laminar or turbulent character of the flow is highlighted by the auto-
correlation coefficient: 
 
 

𝐶!! 𝜃 =
𝑢 𝑡′ 𝑢 𝑡! + 𝜃 𝑑𝑡′!!

!!

𝑢 𝑡′ !𝑑𝑡′!!
!!

   (3.1) 

 
being 𝑢 𝑡  a time dependent velocity component at a given point and 𝜃 the 
delay time. The auto correlation coefficient gives an indication of the 
predictability of the flow velocity. If the velocity component is periodic or 
quasi periodic, its frequency spectrum consists of isolated rows. A quasi-
periodic function is characterised by a frequency spectrum with nonzero 
rows, corresponding to frequencies, whose ratio is an irrational number.  
The autocorrelation coefficient is periodic or quasi-periodic with respect to 
the delay time, achieving maxima and minima at periodic intervals of time 
(figure 3.3). In this case the flow velocity is predictable and so the flow as a 
whole4. If the velocity component has a frequency spectrum with a conti-
nuous distribution of frequencies, the autocorrelation coefficient vanishes as 
the delay time increases (figure 3.4) and the flow velocity is unpredictable 
and so the flow as a whole. It follows that a turbulent flow, being unpre-
dictable, can be considered to be the sum of an infinite number of harmonic 
functions, with a continuous distribution of frequencies.  
 

																																																								
3 If the ratio of the frequencies of the peaks is not rational.  
4	For this reason, the scenario of transition to turbulence hypothesized by Landau and Hopf 
is now considered not satisfactory. 
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Figure 3.3: Behaviour of the autocorrelation function  

with respect to the delay time for a quasi-periodic signal. 
 

 
Figure 3.4: Behaviour of the autocorrelation function  

with respect to the delay time for a random signal. 
 
 
3.3.  The Reynolds average approach to turbulence 
 
Let us consider any quantity per unit of mass expressed by the variable 𝑓. 
The balance equation has the general form: 
 
 𝜕𝑓

𝜕𝑡
+ 𝐮 ∙ 𝛁𝑓 = 𝛁 ∙ 𝚪 𝛁𝑓 + S  

  (3.2) 
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Being S a source or sink term and 𝚪 the diffusivity matrix. The magnitude of 
the elements of the latter gives an indication of the tendency of the 
considered quantity to diffuse. The greater the magnitude, the greater the 
tendency to diffuse. 
The velocity field 𝐮 affects the behaviour of the considered flow quantity 𝑓: 
if the former fluctuates randomly, the latter behaves the same. The quantity 
𝑓 may in turn affect the velocity field: in this case it is defined as active 
quantity, while if it does not affect the velocity field it is defined passive. 
The balance equation 3.2 is impossible to solve for 𝑓 if the velocity field 𝐮 is 
turbulent: it is more convenient to follow a statistical approach based on the 
hypothesis to have 𝑛 subsequent executions or realizations of the same tur-
bulent flow, obtained being equal the boundary conditions. Initial conditions 
can change from a realization to the other, being affected by small 
perturbations. The 𝑖!! realization of the flow gives the quantity 𝑓!=𝑓! 𝐱, 𝑡 , at 
the point 𝐱 and the time 𝑡. Let us define the ensemble average5 as: 
 

𝑓 𝐱, 𝑡 =
1
𝑛

𝑓! 𝐱, 𝑡
!

!!!

   (3.3) 

 
Of course, the number of realizations 𝑛 has to be large enough, so that the 
results of the ensemble operations do not depend on 𝑛.  
The ensemble average is a linear operation, i.e. satisfies the following 
properties, given a constant 𝑐 and another flow quantity ℎ 𝐱, 𝑡 : 
 

𝑐𝑓 𝐱, 𝑡 = 𝑐 𝑓 𝐱, 𝑡 , 𝑓 𝐱, 𝑡 + ℎ 𝐱, 𝑡 = 𝑓 𝐱, 𝑡 + ℎ 𝐱, 𝑡           (3.4) 
 
The residual 𝑓!! 𝐱, 𝑡  is defined as the difference of the single realization with 
the ensemble average: 
 
 𝑓!! 𝐱, 𝑡 = 𝑓! 𝐱, 𝑡 − 𝑓 𝐱, 𝑡    (3.5) 
 

																																																								
5 Actually Osborne Reynolds considered the temporal mean in his approach but today is 
preferable to use the ensemble average. 
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Then the ensemble average of the residual vanishes identically: 
 
 𝑓! 𝐱, 𝑡 = 𝑓 𝐱, 𝑡 − 𝑓 𝐱, 𝑡 = 𝑓 𝐱, 𝑡 − 𝑓 𝐱, 𝑡 = 0   (3.6) 
 Indeed the ensemble average of the ensemble average gives simply the 
ensemble average.  
The ensemble average of the product of two quantities 𝑓, ℎ, expressing 
them as: 𝑓 = 𝑓 + 𝑓!, ℎ = ℎ + ℎ!, gives: 
 

𝑓ℎ = 𝑓 + 𝑓! ℎ + ℎ! = 𝑓 ℎ + 𝑓 ℎ! + 𝑓′ ℎ + 𝑓!ℎ′ = 
 

𝑓 ℎ + 𝑓 ℎ′ + 𝑓′ ℎ + 𝑓!ℎ′ = 𝑓 ℎ + 𝑓!ℎ′             (3.7) 

 
The ensemble average of the product of two quantities is expressed as the 
sum of the product of the ensemble average of the two quantities and the 
ensemble average of the product of the residuals. The latter is generally not 
vanishing.  
Finally, differentiation does neither affect nor is affected by the ensemble 
average operation: 
 
 𝜕𝑓

𝜕𝑡
=
𝜕 𝑓
𝜕𝑡

,   𝛁𝑓 = 𝛁 𝑓    (3.8) 

 
In previous considerations, 𝑓, ℎ  have been implicitly considered to be 
scalars, but the same results would have been obtained with vector 
quantities.  Equations 3.3-3.8 express the Reynolds conditions. 
Let us apply the ensemble average operator to the mass conservation 
equation for an incompressible flow: 
 
 𝛁 ∙ 𝐮 = 0   ⇒    𝛁 ∙ 𝐮 = 0   (3.9) 
 
The ensemble average velocity field is solenoidal, so it follows that the 
residual velocity field is also solenoidal: 
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 𝛁 ∙ 𝐮 = 𝛁 ∙ 𝐮 + 𝐮′ = 𝛁 ∙ 𝐮 + 𝛁 ∙ 𝐮! = 0   (3.10) 
 
Accounting for equation 3.9, follows: 
 
 𝛁 ∙ 𝐮! = 0   (3.11) 
 
 
3.3.1  The turbulent diffusivity 
Let us apply the ensemble average operator to the general form of the 
balance equation 3.2: 
 
 𝜕𝑓

𝜕𝑡
+ 𝐮 ∙ 𝛁𝑓 = 𝛁 ∙ 𝚪 𝛁𝑓 + S     (3.12) 

 
Assuming that the source or sink term S and the diffusivity matrix 𝚪 have 
the same values for each realization and accounting for properties 3.8, the 
ensemble average balance equation takes the form: 
 
 𝜕 𝑓

𝜕𝑡
+ 𝐮 ∙ 𝛁𝑓 = 𝛁 ∙ 𝚪 𝛁𝑓 + S     (3.13) 

 
Thanks to the property 3.7, the ensemble average of the convective term at 
the left hand side of equation 3.13 can be expressed as: 
 
 𝐮 ∙ 𝛁𝑓 = 𝐮 ∙ 𝛁𝑓 + 𝐮′ ∙ 𝛁𝑓′    (3.14) 

 Moreover, thanks to the property 3.7, the ensemble average of the 
convective term at the left hand side of equation 3.13 can be expressed as: 
 
 𝐮 ∙ 𝛁𝑓 = 𝛁 ∙ 𝐮 𝑓 + 𝛁 ∙ 𝐮′𝑓′    (3.15) 
 
equation 3.13 assumes consequently the form: 
 
 𝜕 𝑓

𝜕𝑡
+ 𝛁 ∙ 𝐮 𝑓 = 𝛁 ∙ 𝚪 𝛁 𝑓 − 𝛁 ∙ 𝐮!𝑓! + S       (3.16) 



3.                                                                                                     Characteristics of Turbulent Flows 
                  

	

45 	

With respect to the original form of the balance equation 3.2, the ensemble 
average of the balance equation 3.16 has the additional term −𝛁 ∙ 𝐮′𝑓′  at 
Right Hand Side. This term is known as the turbulent transport term. The 
latter is unknown since it is expressed in terms of the residuals of the 
velocity field and the flow quantity 𝑓. 
The ensemble average of the balance equation 3.16 can then be solved in 
order to determine the ensemble average of the flow quantity 𝑓, once the 
ensemble average velocity field 𝐮  is known, only if the turbulent transport 
term can be expressed in terms of known quantities: i.e. if a suitable closure 
hypothesis is introduced.  
A very formal closure hypothesis consists of introducing the turbulent diffu-
sivity matrix 𝚪′ and expressing the ensemble average of the product 𝐮′𝑓′  in 
terms of the gradient of the ensemble average of the flow quantity 𝑓: 
 
 𝐮′𝑓′ = −𝚪′𝛁 𝑓    (3.17) 
 
As a consequence, the ensemble average equation can be put in the form: 
 
 𝜕 𝑓

𝜕𝑡
+ 𝛁 ∙ 𝐮 𝑓 = 𝛁 ∙ 𝚪 𝛁 𝑓 + 𝛁 ∙ 𝚪! 𝛁 𝑓 + S    (3.16) 

 
In other words the turbulent transport term is represented by an additional 
diffusive term, whose diffusivity matrix 𝚪′ is not known. The turbulent 
diffusivity has been introduced by Boussinesq: it depends on the flow field 
and is generally greater than the molecular diffusivity. 
The Boussinesq hypothesis represents the effect of the turbulent transport, 
due to the fluctuating convective motion, as a strong tendency to dilute and 
diffuse the flow quantities.  
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Figure 3.5: Effect of the turbulent transport on a passive scalar  

initially confined in a circular region. 

 
In figure 3.5 the effect of the turbulent transport is shown for the 
concentration of a passive scalar, immersed in a homogeneous and 
isothropic turbulent velocity field. Time and spatial scales are dimensionless. 
The region occupied by the passive scalar at time t=0 is circular. As time 
goes by, it takes on an increasingly complex and irregular shape due to the 
action of the turbulent velocity field. 
 
 
3.4.  Time average and expected value. Scales of the turbulent motion.  
 
The ensemble average operation is conceptually important, but practically 
impossible to realize, as it needs a very large number of repeated 
experiments. From a single experiment however, it is possible to obtain time 
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and spatial averages. Let us define the time average of a time dependent flow 
quantity 𝑓 as: 
 
 

𝑓 =
1
𝑇

𝑓 𝑡′ 𝑑𝑡′

!!!!

!!!!

   (3.19) 

 
It is generally assumed that, if 𝑇  is large enough and the boundary 
conditions are steady, the time average turbulent variable will be steady too, 
i.e. it will neither depend on 𝑡 nor on 𝑇. In other words the time average 
operation filters out the turbulent fluctuations from a turbulent quantity. 
The time average can be used instead of the ensemble average, with an 
evident advantage, in order to obtain the average balance equation, if the 
value of the integral: 
 
 

Λ! = C!! 𝜃 𝑑𝜃
!

!

   (3.20) 

is finite. Λ!  is dimensionally homogeneous to an interval of time. The 
condition 3.20 is satisfied if the autocorrelation coefficient tends to zero 
with the increase of the delay time 𝜃: i.e. if the relative flow quantity loses 
correlation with itself after a while. In this case, if one samples the flow 
quantity for an interval of time 𝑇, so that 𝑇 ≫ Λ!, it is as if one got many 
different realizations of the same experiment, because the internal 
correlation of the flow quantity is completely lost after a time interval Λ!, so 
the time average can be considered equivalent to the ensemble average. The 
time interval Λ! is the turbulent integral time-scale. Let us consider the time 
behaviour of the autocorrelation coefficient relative to an unpredictable, 
turbulent flow quantity, shown in figure 3.6.  
The meaning of the turbulent integral time-scale is the basis of the rectangle, 
the area of which is equivalent to that subtended by the dashed line.  
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Figure 3.6: The meaning of the integral turbulent time-scale Λ!  

and of the turbulent time-microscale λ! . 
 
Let us consider the osculating parabola to the function of the autocorre-
lation coefficient C!! 𝜃  at the point θ = 0,𝑪!! = 1 . According to the 
parabola, the autocorrelation coefficient vanishes for 𝜃 = 𝜆!, given by the 
algebraic expression: 
 

𝜆! = −
2

𝑑!C!!
𝑑𝜃! !!!

 

 
The time interval 𝜆!  is defined as the turbulent time-microscale and is 
representative for the internal coherence of the flow quantity, i.e. it 
represents the time interval during which the flow quantity shows 
correlation with itself. The predictability of any given turbulent flow 
quantity, whose turbulent time-microscale is 𝜆! , disappears for 𝑡 > 𝜆! . 
Spatial turbulence scales can be defined in a similar way. 
An important quantity is the time average of the square of the residuals of 
the flow quantity: 
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𝑓′! =
1
𝑇

𝑓 𝑡′ − 𝑓 !𝑑𝑡′

!!!!

!!!!

   (3.23) 

 
it gives the order of magnitude of the variation of the turbulent quantity. 
An alternative and interesting definition of average can be given in terms of 
probability density function (PDF) 𝔭 = 𝔭 𝑓  relative to the turbulent flow 
quantity. The meaning of the PDF is that 𝑑𝔭 = 𝔭 𝑓 𝑑𝑓 gives the probability, 
i.e. the degree of feasibility expressed in percentage, that the turbulent flow 
quantity 𝑓  assumes a value belonging to the interval 𝑓, 𝑓 + 𝑑𝑓 . The 
fundamental property of the PDF is: 
 
 

𝔭 𝑓 𝑑𝑓
!!

!!

= 1   (3.24) 

 
i.e. the probability that the turbulent flow quantity assumes values belonging 
to the interval −∞ < 𝑓 < ∞ is 100%. 
The average or expected value 𝑓! is defined as the first statistical moment 
of the PDF, with respect to 𝑓: 
 
 

𝑓! = 𝑓𝔭 𝑓 𝑑𝑓
!!

!!

   (3.25) 

 
while the second statistical moment of the PDF with respect to 𝑓 − 𝑓! gives 
𝜎!, the means square of the residual: 
 
 

𝜎! = 𝑓 − 𝑓!
!𝔭 𝑓 𝑑𝑓

!!

!!

   (3.26) 

 
The shape of the PDF is characteristic for the considered phenomenon.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



51	

CHAPTER 4   THE REYNOLDS AVERAGE NAVIER-STOKES  
 
	
4.1.  The Reynolds equation (RANSE) for incompressible flows  
 
In the previous chapter we have shown how applying the ensemble average 
operation to the mass conservation equation for an incompressible flow, the 
mass conservation equation for the ensemble average flow 3.9 is obtained. 
Moreover, the ensemble average operation has been applied to the general 
form of the balance equation 3.2 and the equation 3.16 has been obtained. 
Let us consider the momentum equation of a viscous Newtonian, income-
pressible fluid, i.e. the Navier-Stokes equation, and apply the ensemble 
average operation term by term:  
 
 𝜕𝐮

𝜕𝑡
+ 𝐮 ∙ 𝛁𝐮 = −

1
𝜌
𝛁𝑝 + 𝐟! +

𝜇
𝜌
𝛁!𝐮     (4.1) 

 
Let us observe that, due to incompressibility and the conditions 3.8, the first 
term at right hand side gives: 
 
 1

𝜌
𝛁𝑝 =

1
𝜌
𝛁𝑝 =

1
𝜌
𝛁 𝑝    (4.2) 

 
The second term at right hand side, assuming that the body force per unit 
mass 𝐟!  assumes the same value for each realization (as e.g. the gravity 
force), gives: 
 
 𝐟! = 𝐟!   (4.3)  
 
The third term at right hand side, thanks to the interchangeability of the 
ensemble average and differential operations, gives: 
 
 𝜇

𝜌
𝛁!𝐮 =

𝜇
𝜌
𝛁! 𝐮    (4.4) 
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For the same reason, the first term at left hand side gives: 
 
 𝜕𝐮

𝜕𝑡
=
𝜕 𝐮
𝜕𝑡

 
  (4.5) 

 
In order to express the ensemble average of the second term at left hand 
side it is necessary to recall the rule 3.7 of the ensemble average of a 
product. Indeed, expressing the velocity field as: 𝐮 = 𝐮 + 𝐮′ , the 
convective term at left hand side is expressed by: 
 
 𝐮 ∙ 𝛁𝐮 = 𝐮 + 𝐮′ ∙ 𝛁 𝐮 + 𝐮′    (4.6) 
 
Then, applying the ensemble average operation and accounting for the rule 
3.7, the following expression is obtained for the ensemble average of the 
convective term: 
 
 𝐮 ∙ 𝛁𝐮 = 𝐮 ∙ 𝛁 𝐮 + 𝐮′ ∙ 𝛁𝐮′    (4.7) 
 
Thanks to the fact that also the residual velocity field is solenoidal (equation 
3.11), the second term at the right hand side of equation 4.7 can also be put 
in the form: 
 
 𝐮′ ∙ 𝛁𝐮′ = 𝛁 ∙ 𝐮′⊗ 𝐮′ = 𝛁 ∙ 𝐮′⊗ 𝐮′    (4.8) 

 
i.e. by adopting the expression of the tensor product of the velocity vector 
field with itself. 
Finally, accounting for the previous results, the ensemble average mo-
mentum equation for an incompressible, viscous, Newtonian fluid or incom-
pressible Reynolds average Navier-Stokes (RANS) equation takes the form: 
 
 𝜕 𝐮

𝜕𝑡
+ 𝐮 ∙ 𝛁 𝐮 = −

𝛁 𝑝
𝜌

+ 𝐟! +
𝜇
𝜌

 𝛁! 𝐮 − 𝛁 ∙ 𝐮′⊗ 𝐮′    (4.9) 
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The last term at right hand side of equation 4.9 comes from the 
decomposition of the velocity field into the average and residual velocity 
field and the ensemble average operation applied to the momentum 
equation: it is a new term that is equivalent to a stress. Indeed the tensor 
𝜌 𝐮′⊗ 𝐮′  is defined as the Reynolds stress tensor or apparent stress tensor. 
Its expression in terms of Cartesian components is: 
 
 

𝜌 𝐮′⊗ 𝐮′ = 𝜌
𝑢!!" 𝑢!!𝑢!! 𝑢!!𝑢!!

𝑢!! 𝑢!! 𝑢!!" 𝑢!! 𝑢!!

𝑢!! 𝑢!! 𝑢!! 𝑢!! 𝑢!!"
   (4.10) 

 
The apparent stress tensor is due to inertia forces and acts mostly as an 
energy absorbing force. The latter statement can be better understood if the 
case of an incompressible fluid (e.g. water) in the gravitational field is 
considered. In this case the body force per unit mass is given by 𝐟! =
−𝑔𝛁𝑥! and can be considered in equation 4.9 together with the ensemble 
average pressure in the ensemble average piezometric head: 𝜁 = 𝑥! +
𝑝 𝜌𝑔. 

Moreover, expressing the convective term at the left hand side of equation 
4.9 as: 
 
 𝐮 ∙ 𝛁 𝐮 =

1
2
𝛁( 𝐮 ∙ 𝐮 ) + 𝛚 × 𝐮    (4.11) 

 
equation 4.9 can be rewritten as: 
 
 𝜕 𝐮

𝜕𝑡
+ 𝛚 × 𝐮 = −𝑔𝛁ℋ +

𝜇
𝜌

 𝛁! 𝐮 − 𝛁 ∙ 𝐮′⊗ 𝐮′    (4.12) 

 
Having defined the hydraulic head ℋ of the ensemble averaged flow field as: 
 
 

ℋ =
𝐮 ∙ 𝐮
2𝑔

+ 𝜁     (4.13) 
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Let us consider a steady flow, with negligible viscous stress, and project 
equation 4.12 along the direction of the velocity, represented by the unit 
vector 𝐞!. The following result is obtained: 
 
 𝑔

𝜕ℋ
𝜕𝑠

= −𝛁 ∙ 𝐮′⊗ 𝐮′ ∙ 𝐞!    (4.14) 

 
In other words, due to the action of the turbulent stress, the hydraulic head 
ℋ of the ensemble averaged flow field is not conserved also during steady 
motion of inviscid fluid (or very high Reynolds number). 
 
 
4.2   Steady uniform turbulent flow 
 
With reference to ensemble average values, a turbulent flow is defined to be 
steady if the local time derivative of an ensemble average of a whatever 
variable 𝑓  vanishes identically: 𝜕 𝑓 𝜕𝑡 = 0 , while it is defined to be 
uniform with respect to a given direction 𝑥! if the spatial derivative of the 
ensemble average velocity vanishes identically: 𝜕 𝑓 𝜕𝑥! = 0. 
 
4.2.1   Steady uniform turbulent 2D flow 
Let us consider a 2D, steady, turbulent flow on a flat wall at 𝑥! = 0, where 
there is a prevailing velocity along the direction 𝑥!: 𝑢! = 0 (figure 4.1).  
The mass conservation equation takes the form: 
 
 𝜕 𝑢!

𝜕𝑥!
= 0  (4.15) 

   
The flow is uniform with respect to the direction 𝑥! . The velocity 
component 𝑢!  depends only on 𝑥!. Therefore, the scalar components of 
the RANS equation assume the form: 
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−𝑔

𝜕 𝜁
𝜕𝑥!

+ 𝜈 
𝑑! 𝑢!
𝑑𝑥!!

−
𝜕 𝑢!! !

𝜕𝑥!
−
𝜕 𝑢!!𝑢!!

𝜕𝑥!
= 0 

−𝑔
𝜕 𝜁
𝜕𝑥!

−
𝜕 𝑢!!𝑢!!

𝜕𝑥!
−
𝜕 𝑢!! !

𝜕𝑥!
= 0 

 

  
 
 (4.16) 

being 𝜁  the ensemble average piezometric head: 𝜁 = 𝑥! + 𝑝 𝜌𝑔 .  
It is usual to assume that also the Reynolds stress has a uniform behaviour, with 
respect to the direction 𝑥!, so that the second equation 4.16 takes the form: 
 
 

𝑔
𝜕 𝜁
𝜕𝑥!

+
𝜕 𝑢!! !

𝜕𝑥!
=

𝜕
𝜕𝑥!

𝑔 𝜁 + 𝑢!! ! = 0 

 

 (4.17) 

whose solution is: 
 𝑔 𝜁 + 𝑢!! ! = 𝑐𝑜𝑛𝑠𝑡 

 
 (4.18) 

The constant value can be set to 𝑔𝜁!, being 𝜁! the piezometric head at the 
wall (𝑥! = 0). It follows that the piezometric 𝜁  is not constant on the cross 
sections. Anyway, it is possible to assume 𝜁 ≈ 𝜁! neglecting the Reynolds 
stress component 𝑢!! !  with reference to the other terms. Then the first 
equation 4.16 takes the form: 
 
 

−𝑔
𝜕𝜁!
𝜕𝑥!

+
𝑑
𝑑𝑥!

𝜈
𝑑 𝑢!
𝑑𝑥!

− 𝑢!!𝑢!!  = 0  (4.19) 

 

It is evident that the two terms at the left hand side of equation 4.19 are 
constant. Setting − 𝜕𝜁! 𝜕𝑥! = J  and 𝜈 𝑑 𝑢! 𝑑𝑥! − 𝑢!!𝑢!! = − 𝜏 𝜌 , equa-
tion 4.19 assumes the form: 
 
 𝜌𝑔𝐽 −

𝑑𝜏
𝑑𝑥!

 = 0  (4.20) 

 
𝜏 and −𝜏 are the tangential stresses that two fluid portions exchange with 
each other across an infinitesimal area with unit normal vector directed as 
𝑥!. Equation 4.20 can be solved immediately. The solution is: 
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𝜏 = 𝜌𝑔𝐽𝑥! + 𝑐𝑜𝑛𝑠𝑡 

 According to equation 4.21 the total stress 𝜏 depends linearly on 𝑥!. 
Let us consider a second flat wall at 𝑥! = 𝑑. In order to determine the 
constant at the right hand side of equation 4.21, the condition that the total 
stress 𝜏 vanishes at 𝑥! = 𝑑 2 is imposed. This condition follows from the 
behaviour of the total stress: it is negative at 𝑥! = 0, it must have the same 
intensity and opposite sign at 𝑥! = 𝑑. It follows that at 𝑥! = 𝑑 2 the total 
stress must vanish. Then from equation 4.21, the value 𝑐𝑜𝑛𝑠𝑡 = −𝜌𝑔𝐽 𝑑 2 is 
obtained and the equation for the total stress  𝜏  takes the form: 
 
 𝜏 = −𝜌𝑔𝐽

𝑑
2
1 −

2 𝑥!
𝑑

 
  

(4.22) 

 

	Figure 4.1: Uniform, steady, turbulent flow in a channel between two parallel walls. 

The total stress 𝜏 is the sum of the viscous and the turbulent stress: the 
former is maximum at the wall, decreases rapidly with 𝑥!  and becomes 
negligible (figure 4.1), the latter vanishes at the wall and increases rapidly 
with 𝑥! . At 𝑥! = 𝑑 2 the total stress vanishes. The total stress at the walls 
has the same intensity, but opposite sign due to the convention adopted on 
the stress: it is the stress action of the lower fluid layer on the upper one.  
It is worth observing that two hypothetical flows, one laminar and the other 
turbulent, with the same piezometric slope and therefore the same 𝜏, would 

 (4.21) 
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have the same slope as the velocity profile at the wall. Nevertheless, while 
for the laminar flow the velocity profile would assume a parabolic shape, for 
the turbulent flow the velocity profile would flatten quickly, determining a 
lower discharge.  

Figure 4.2: Comparison between laminar and turbulent motion. 
 
Obviously two hypothetical flows with the same discharge (figure 4.2), one 
laminar and the other turbulent, should have two different values of 𝜏 and 
therefore of piezometric slope. In order to have the same discharge, the 
turbulent flow should have a greater 𝜏 and hence a greater piezometric slope. 
The comparison between the two motions is only hypothetical, because the 
flow, according to the Reynolds number, is either laminar or turbulent. 
 
4.2.2  Velocity profile in the steady, uniform, turbulent flow 
The profile of the ensemble average velocity in the steady, uniform, 
turbulent motion can be obtained by means of dimensional analysis. 
In this case, at least two different regions must be distinguished: the wall 
region and the core region. The first is a region very close to the wall, while 
the second is a region close to the central part of the channel, where both 
turbulent and viscous stresses are gradually negligible. Within the wall 
region, both viscous and turbulent stresses are important and dominate each 
other: the former in the viscous sublayer, the latter in the inertial sublayer. 
In the wall region the ensemble average velocity 𝑢! , in the following 
indicated by 𝑢 for the sake of simplicity, is assumed to be a function of the 
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distance 𝑥! from the wall, the stress at the wall 𝜏!, the viscosity and the 
density of the fluid: 
 
 𝑓 𝑢, 𝑥!, 𝜏! , 𝜌, 𝜇 = 0  (4.23) 
 
By applying the Buckingham theorem, the dimensional equation 4.23 can be 
reduced to the dimensionless equation: 
 
 𝑢

𝑢∗
= 𝑓∗

𝜌𝑢𝑥!
𝜇

  (4.24) 

 
Being the friction velocity 𝑢∗ defined as: 
 
 

𝑢∗ =
𝜏!
𝜌
= 𝑔𝐽

𝑑
2

   (4.25) 

 

The dimensionless parameter 𝜌𝑢𝑥2 𝜇  is often indicated with 𝑦! . Then 
equation 4.24 becomes: 
 
 𝑢

𝑢∗
= 𝑓∗ 𝑦!    (4.26) 

 
The shape of the dimensionless function 𝑓∗ can be obtained by applying 
equation 4.22, where the stress 𝜏 is expressed as the sum of the viscous and 
the Reynolds stress: 
 
 𝜈

𝑑𝑢
𝑑𝑥!

− 𝑢!!𝑢!!  = 𝑔𝐽
𝑑
2
1 −

2𝑥!
𝑑

  (4.27) 

 
The wall region is analysed: 2𝑥! 𝑑 ≪ 1. Within this region the total stress 
can be assumed to be constant with respect to 𝑥!. Moreover, in the viscous 
sublayer the turbulent stress is negligible, so that equation 4.27 takes the 
form: 
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 𝜈
𝑑𝑢
𝑑𝑥!

 = 𝑔𝐽
𝑑
2
=
𝜏!
𝜌

   (4.28) 

 
Equation 4.28 can be integrated, recalling the definition of the friction 
velocity 𝑢∗ and of the dimensionless parameter 𝑦!: 
 
 𝑢

𝑢∗
 = 𝑦! + 𝑐𝑜𝑛𝑠𝑡   (4.29) 

 
The velocity profile in the viscous sublayer is linear with respect to 𝑦!. The 
constant at the right hand side of equation 4.29 vanishes, due to the fact that 
at 𝑦! = 0, 𝑢 = 0. 
In the inertial sublayer, the viscous stress is negligible, so that equation 4.27 
takes the form: 
 
 − 𝑢!!𝑢!!  = 𝑢∗!  (4.30) 
 
Equation 4.30 is useless, unless a closure equation is applied for the 
Reynolds stress6.  
However, in the inertial sublayer the viscosity affects 𝑢, as its values depend 
on the condition achieved at the edge of the viscous sublayer. But the 
variations of 𝑢 with 𝑥! do not depend on the viscosity, i.e. the derivative of 
𝑢 does not depend on 𝜇 but only on 𝜌, 𝑥! and 𝜏!. Therefore, we have 
 
 𝑓

𝑑𝑢
𝑑𝑥!

, 𝑥!, 𝜏! , 𝜌 = 0  (4.31) 

 
By applying the Buckingham theorem, the dimensionless equation can be 
obtained: 
 
 𝑓

𝑑𝑢
𝑑𝑥!

𝑥!
𝑢∗

= 0    ⇒     
𝑑𝑢
𝑑𝑥!

𝑥!
𝑢∗
=
1
𝜅

  (4.32) 

																																																								
6 In this case the most common choice is the Boussinesq’s hypothesis with the mixing 
length turbulence model 
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Whose solution is: 
 𝑢

𝑢∗
 =

1
𝜅
ln 𝑥!  + 𝑐𝑜𝑛𝑠𝑡   (4.33) 

 
The constant 𝜅 is known as Von Karman constant. 
The value of the constant at the right hand side of 4.33 can be obtained 
considering the velocity at a given distance from the wall. Let us assume that 
at 𝑥! = 𝜈 𝑢∗ the velocity is equal to 𝑢0: 
 

 𝑐𝑜𝑛𝑠𝑡 =
𝑢!
𝑢∗
−
1
𝜅
ln
𝜈
𝑢∗

    (4.34) 

 
Then the velocity profile 4.34 takes the form: 
 
 

 𝑢
𝑢∗

 =
𝑢!
𝑢∗
+
1
𝜅
ln
𝑢∗𝑥!
𝜈

=
𝑢!
𝑢∗
+
1
𝜅
ln 𝑦!  (4.35) 

 

 
Equation 4.35 is the well-known logarithmic velocity profile on a smooth 
wall. A huge number of results has confirmed it experimentally. The ratio 
𝑢! 𝑢∗ is usually obtained by interpolating the experimental results.  
The logarithmic velocity profile can also be defined in the case of a rough 
surface: in this case, introducing the surface roughness 𝜀, the logarithmic 
velocity profile takes the form: 
 
 

 𝑢
𝑢∗

 =
𝑢!
𝑢∗
+
1
𝜅
ln
𝑥!
𝜀

  (4.36) 

 
Being in this case 𝑢! the velocity at 𝑥! = 𝜀. 
Figure 4.3 shows the velocity profile in the wall region on a smooth surface.  
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Figure 4.3: The velocity profile in the wall region. 

 
The matching of the profiles in the viscous and inertial sublayer occurs 
conventionally at 𝑦! = 11. The velocity profile 4.29 in the viscous sublayer 
is valid for 0 ≤ 𝑦+ ≤ 5, while the velocity profile 4.35 in the inertial sublayer 
is valid for 𝑦! ≥ 30. For 5 ≤ 𝑦+ ≤ 30 there is the so-called buffer layer.  
The logarithmic velocity profile is valid for: 𝑦! ≤ 10!. For 𝑦! > 10!, the 
experimental results show a meaningful deviation from the logarithmic law. 
In this region, where the assumption 2𝑥! 𝑑 ≪ 1  is no longer valid, a 
correction, defined the wake function, must be added to the logarithmic 
velocity profile, in order to represent accurately experimental results. From a 
technical point of view however, even the logarithmic law without 
corrections permits to obtain satisfying results. 
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4.2.3   Turbulent boundary layer on a flat plate  
 

Figure 4.4: Development of the boundary layer and the 2D steady,  
uniform turbulent flow on a flat wall. 

 
The boundary layer on a flat plate is laminar as long as the local Reynolds 
number: 
 

𝑅𝑒!  =
𝑢!𝑥!
𝜈

  (4.37) 
 
is less than 10!. As the local Reynolds number increases, the laminar to 
turbulent transition occurs (figure 4.4). For 𝑅𝑒! > 10! the flow is clearly 
turbulent (figure 4.5). 𝑢!  is the undisturbed velocity. One of the most 
important technical aspects in the turbulent boundary layer, as in the laminar 
boundary layer, is the determination of the tangential stress acted by the 
plate on the fluid and vice versa. To this aim, the knowledge of the velocity 
profile is fundamental. The latter is expressed by:  
 
 𝑢 − 𝑢!

𝑢∗
 = 𝑓

𝑥!
𝛿

  (4.38) 
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Figure 4.5: Turbulent boundary layer on a flat plate. Source: Impact of pure favorable 
pressure gradient on a supersonic flat-plate turbulent boundary layer, Qian-cheng Wang, 
Zhen-guo Wang, Yu-xin Zhao, Acta Astronautica, Volume 154, January 2019, Pages 67-73. 

Equation 4.38 expresses the velocity profile as velocity defect (figure 4.6). 𝛿 
is a length scale, characteristic for the wall region on the flat plate.  
Assuming a logarithmic law, the velocity defect law 4.38 takes the form: 
 
 𝑢 − 𝑢!

𝑢∗
 =

1
𝜅
ln
𝑥!
𝛿
+ 𝐵  (4.39) 

 
Where 𝐵 is the velocity defect at 𝑥! = 𝛿.  
The velocity defect law is valid for 𝑥! < 0.2 𝛿. For 𝑥! > 0.2 𝛿  experimental 
data differ sensibly from the values given by equation 4.39 (figure 4.6).  

Figure 4.6: The logarithmic velocity defect. 
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Once the defect law is known, it is possible to determine the stress 𝜏! and 
then the drag force 𝐹 on the surface 𝜎. The latter is usually expressed by 
means of a drag coefficient 𝑐!: 
  

𝐹 = 𝑐!𝜌
𝑢!!

2
𝜎  (4.40) 

 
The drag coefficient depends on the Reynolds number. Typical behaviours 
for the laminar and turbulent flows are expressed respectively by: 
𝑐! = 1.33 𝑅𝑒   and  𝑐𝐷 = 3.91 𝑅𝑒2.58, shown in figure 4.7. 
 

	
Figure 4.7: The drag coefficient. 
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CHAPTER 5  BALANCE EQUATIONS OF KINETIC ENERGY  
 
 
5.1.  Balance of the average kinetic energy   
 
Let us consider the scalar product of the RANS equation 4.9 times the 
ensemble average velocity vector 𝐮  side by side and apply the ensemble 
average to the two sides: 
 

𝐮 ∙ ! 𝐮
!"

+ 𝐮 ∙ 𝛁 𝐮 = 𝐮 ∙ − 𝛁 !
!
+ 𝐟! +

!
!

 𝛁! 𝐮 − 𝛁 ∙ 𝐮′⊗ 𝐮′     (5.1) 

 
The left hand side of equation 5.1 can be rewritten as: 
 
 

𝐮 ∙
𝜕 𝐮
𝜕𝑡

+ 𝐮 ∙ 𝛁 𝐮 =
𝜕
𝜕𝑡

𝐮 ∙ 𝐮
2

+ 𝐮 ∙ 𝛁
𝐮 ∙ 𝐮
2

   (5.2) 

 
i.e. is the material derivative of the average kinetic energy per unit mass 
𝐾 𝐾 = 𝐮 ∙ 𝐮 2 , defined in terms of the ensemble average velocity field. 
The last term at right hand side of equation 5.2 can be put in the form 
 
 𝐮 ∙ 𝛁 ∙ 𝐮!⊗ 𝐮! = 𝛁 ∙ 𝐮!⊗ 𝐮! 𝐮 − 𝐮!⊗ 𝐮! :𝛁 𝐮    (5.3) 
 
so that equation 5.2 takes the form: 
 

 
The first two terms at right hand side are the contributions to the kinetic 
energy given by the pressure and the body force. The third term at right 
hand side is the energy dissipated per unit time by the viscous stresses, 
defined in terms of the ensemble average velocity field. 

 𝜕𝐾
𝜕𝑡

+ 𝐮 ∙ 𝛁𝐾 = −
𝛁 ∙ 𝑝 𝐮

𝜌
+ 𝐮 ∙ 𝐟! +

𝜇
𝜌

 𝐮 ∙ 𝛁! 𝐮 − 𝛁 ∙ 𝐮!⊗ 𝐮! 𝐮 + 𝐮!⊗ 𝐮! :𝛁 𝐮  

                                                                                                                              (5.4) 
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Finally, the last two terms at the right hand side of equation 5.4 are 
expressed in terms of the Reynolds stress. The first is the energy per unit 
time produced by the Reynolds stress and is generally negligible; the second 
is the energy per unit time generated by the Reynolds stress needed to 
deform the average flow field. This term, known as turbulent deformation 
work, is not negligible and is a sink term for the kinetic energy. The 
turbulent deformation work takes energy from the ensemble averaged flow 
and transfers it to the fluctuating flow. 
The expression of the turbulent deformation work in terms of Cartesian 
components is given by: 
 
 

𝐮!⊗ 𝐮! :𝛁 𝐮 = 𝑢!!𝑢!!
𝜕 𝑢!
𝜕𝑥!

    (5.5) 

 
The deformation of the flow field results mainly in tilting and stretching of 
the vortex filaments. The former bends the vortex filament, increasing the 
three-dimensionality of motion, the latter stretches the vortex filament, 
reducing its dimension and increasing the vorticity at the same time. This 
process is performed, until the dissipation becomes important, absorbing 
the whole energy extracted by the deformation work. 
 
 
5.2  Balance of the turbulent kinetic energy  
 
Let us consider the scalar product of the Navier-Stokes equation for an 
incompressible fluid times the fluctuating velocity vector field 𝐮!: 
 
  𝐮! ∙ !𝐮

!"
+ 𝐮 ∙ 𝛁𝐮 =  𝐮! ∙ − 𝛁!

!
+ 𝐟! +

!
!

 𝛁!𝐮    (5.6) 

Let us express the velocity field as the sum of the ensemble average and the 
residual velocity field and then perform the ensemble average operation. 
The result is obtained after a cumbersome series of steps, which are shown 
in detail in the following. 
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From the first term at left hand side of equation 5.6 one obtains: 
 
 𝐮! ∙  

𝜕𝐮
𝜕𝑡

= 𝐮! ∙  
𝜕
𝜕𝑡

𝐮 + 𝐮! =  
𝜕
𝜕𝑡

𝐮! ∙ 𝐮!

𝟐
   (5.7) 

 
Introducing the turbulent kinetic energy 𝐾′ per unit mass: 
 
 

𝐾! =
𝐮! ∙ 𝐮!

2
   (5.8) 

 
the term 5.7 can be rewritten as: 
 
 

𝐮! ∙  
𝜕𝐮
𝜕𝑡

=
𝜕 𝐾!

𝜕𝑡
   (5.9) 

 
From the second term at left hand side of equation 5.6 one obtains: 
 

 𝐮! ∙  𝐮 ∙ 𝛁𝐮 = 𝐮! ∙ 𝐮 ∙ 𝛁 𝐮 + 𝐮! ∙ 𝐮! ∙ 𝛁 𝐮 + 𝐮! ∙ 𝐮 ∙ 𝛁𝐮! + 𝐮! ∙ 𝐮! ∙ 𝛁𝐮!  (5.10) 

which can be put in the form: 
 
 𝐮! ∙  𝐮 ∙ 𝛁𝐮 = 𝐮!⊗  𝐮! :𝛁 𝐮 + 𝐮 ∙ 𝛁𝐾′ + 𝐮! ∙ 𝛁𝐾′    (5.11) 
 
Summing the second and third term of equation 5.11, the latter takes the 
form: 
 
 𝐮! ∙  𝐮 ∙ 𝛁𝐮 = 𝐮!⊗  𝐮! :𝛁 𝐮 + 𝐮 ∙ 𝛁𝐾′    (5.12) 
 
The first term at the right hand side of equation 5.6 side gives: 
 
 

 𝐮! ∙
𝛁𝑝
𝜌

= 𝐮! ∙
𝛁 𝑝
𝜌

+ 𝐮! ∙
𝛁𝑝′
𝜌

=
1
𝜌
𝛁 ∙ 𝑝′𝐮!    (5.13) 
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While the second term at right hand side vanishes identically: 
 
 𝐮! ∙  𝐟! = 0   (5.14) 
 
Finally, the last term at right hand side gives: 
 
 𝜇

𝜌
 𝐮! ∙  𝛁!𝐮 =

2𝜇
𝜌
𝛁 ∙  𝔻 𝐮! −

2𝜇
𝜌

 𝔻′:  𝔻    (5.15) 

 
expressing as usual the velocity field as the sum of the ensemble average and 
the residual field and performing the ensemble average operation, equation 
5.15 takes the form: 
 
 2𝜇

𝜌
𝛁 ∙  𝔻 𝐮! −

2𝜇
𝜌

 𝔻′:  𝔻 =
2𝜇
𝜌
𝛁 ∙  𝔻′ 𝐮! −

2𝜇
𝜌

 𝔻′:  𝔻′    (5.16) 

 

Being 𝔻′ the symmetric part of the second order tensor 𝛁𝐮!. Collecting the 
previous results, the balance of the turbulent kinetic energy is obtained: 

 

The meaning of the terms of equation 5.17 is explained in the following. 
The second term at left hand side expresses the transport of turbulent 
kinetic energy due to the ensemble average and residual velocity field. It is a 
pure convection term and does not account for dissipation at all. The first 
term at right hand side expresses energy transferred from point to point, due 
to pressure and viscous stresses. The term 2𝜇𝛁 ∙ 𝔻′𝐮!  accounts mainly for 
the diffusion of turbulent kinetic energy due to the residual velocity. Indeed, 
it can be rewritten as: 

 
 2𝜇𝛁 ∙ 𝔻!𝐮! = 2𝜇𝛁 ∙ 𝛁 𝐾! + 𝜇𝛁 ∙ 𝛚!×𝐮! = 2𝜇𝛁𝟐 𝐾! + 𝜇𝛁 ∙ 𝛚′×𝐮!   (5.18) 

 
 

 !〈!!〉
!"

+ 𝐮 ∙ 𝛁𝐾′ = − !
!
𝛁 ∙  𝑝!𝐮! − 2𝜇 𝔻′𝐮! − 𝐮!⊗  𝐮! :𝛁 𝐮 − !!

!
𝔻′: 𝔻′      

(5.17) 
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The third term at right hand side of equation 5.17 appears, with opposite 
sign, in the kinetic energy equation 5.4 too: it represents the work done by 
the Reynolds stresses to deform the fluid and is generally a negative 
contribution in the kinetic energy equation 5.4, while it is a positive 
contribution in the turbulent kinetic equation 5.17. In other words this term 
represents the energy transferred from the ensemble average motion to feed 
the residual motion, i.e. the energy extracted from the kinetic energy relative 
to the ensemble average motion which increases the turbulent kinetic 
energy. This term, thanks to the symmetry of the Reynolds stress second 
order tensor, can be expressed by means of the symmetric part of the 
deformation velocity second order tensor 𝔻 : 
 
 𝐮!⊗  𝐮! :𝛁 𝐮 = 𝐮!⊗  𝐮! : 𝔻    (5.19) 
 
The fourth term at right hand side of equation 5.17 represents the 
dissipation of turbulent kinetic energy due to the residual motion. The 
energy flux can be represented as follows: mechanical energy is transferred 
from the ensemble average flow field to the residual flow field thanks the 
work done by the Reynolds stresses and is eventually dissipated by the 
viscous stresses caused by the residual flow field.  

 

  
Figure 5.1: Synthetic diagram of the energy flux 

between the ensemble average and the residual flow field. 
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5.3.  The length scale of the fluctuating motion 
 
The term 2𝜇 𝔻′: 𝔻′ 𝜌 dissipates efficiently the turbulent kinetic energy 𝐾! 
because the components of the symmetric deformation velocity second 
order tensor 𝔻′ are large enough. The order of magnitude of the latter can 
be expressed as: 
 
 

𝐷!"! ≈
𝐾′
𝓵

   (5.20) 

 
Being 𝓵 the length scale over which variations of residual velocity of order 
of magnitude equal to 𝐾′  occur. Thanks to formula 5.20, the order of 
magnitude of the dissipation of turbulent kinetic is expressed as: 
 
 𝜇

𝜌
𝔻′: 𝔻′ ≈

𝜇
𝜌
𝐾′
𝓵!

 
  

(5.21) 

 
The order of magnitude of the term expressing the energy transfer from the 
kinetic to the turbulent kinetic energy: 𝐮!⊗  𝐮! : 𝔻  is given by: 
 
 𝐮!⊗  𝐮! : 𝔻 ≈ 𝐾′

𝑈
ℒ

 
  

(5.22) 

 
being 𝑈,ℒ the velocity and length scales of the ensemble average flow 
respectively, which determine the order of magnitude of 𝔻  as: 𝔻 ≈ 𝑈 ℒ.  
At equilibrium, third and fourth term at right hand side of equation 5.17 
have same order of magnitude: this means that the energy transferred from 
the ensemble average length scales is dissipated at residual motion length 
scales: 

 
 

 𝜇
𝜌
𝐾′
𝓵!

≈ 𝐾′
𝑈
ℒ

  (5.23) 
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The ratio 𝓵 ℒ is obtained from equation 4.37 as: 
 
 𝓵

ℒ
≈

𝜇
𝜌𝑈ℒ

=
1
𝑅𝑒

 
  

(5.24) 

 
It is interesting to observe that, while ℒ is characterized by the geometry of 
the fluid domain, 𝓵 is determined by the considered flow in terms of the 
Reynolds number: the larger the Reynolds number, the smaller the length 
scale 𝓵 of the fluctuating motion.  
The ratio 𝓵 ℒ gives an idea of how many grid points should be taken on the 
length scale ℒ  along a given direction to give a sufficiently accurate 
description of the turbulent motion. Indeed, if the smallest lengthscale to be 
represented is 𝓵, the number of grid points needed to give a sufficiently 
accurate description of the flow within the volume ℒ! is given by:  
 
 ℒ

𝓵

!
≈ 𝑅𝑒

!
! 

  
(5.25) 

 
Due to the high values of the Reynolds number characterizing turbulent 
flows, the number of grid points necessary to give a sufficiently accurate 
description of the flow can become huge. 
 

 
5.4.  Spectral distribution of the kinetic energy in a turbulent flow 
 
5.4.1. Spatial Fourier modes and their energy balance  
Continuous vector or scalar functions of spatial variables can be expressed 
as sums of series of spatial harmonic functions. Consider a parallelepiped 
fluid domain, with sides parallel to the three orthogonal spatial directions. 
The fluid velocity can be expressed as:  
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𝐮(𝐱) = 𝐮𝐤𝑒!𝐤∙𝐱
∞

𝑘1=−∞
𝑘2=−∞
𝑘3=−∞

   (5.26) 

 

In which, 𝐼 is the imaginary unit, 𝐮𝐤 is the Fourier coefficient relative to the 
wave vector 𝐤 = 𝑘!𝐞! + 𝑘!𝐞! + 𝑘!𝐞!. The sum at right hand side of equa-
tion (5.26) can be also expressed more concisely as: 

𝐮(𝐱) = 𝐮𝐤𝑒!𝐤∙𝐱
𝐤

 

The Cartesian components of the wave vector 𝑘!, 𝑘!, 𝑘! are defined as: 

𝑘! = 2𝜋𝑙 𝐿! , 𝑘! = 2𝜋𝑚 𝐿! , 𝑘! = 2𝜋𝑛 𝐿! ,  being 𝑙,𝑚,𝑛  integers and 
𝐿!, 𝐿!, 𝐿! the sides of the parallelepiped fluid domain. The Fourier coeffi-
cient 𝐮𝐤 depends only on time and is defined by: 

 

𝐮𝐤 =
𝟏

𝐿!𝐿!𝐿!
𝐮𝑒!!𝐤∙𝐱𝑑𝑥!𝑑𝑥!𝑑𝑥!

!!

𝟎

!!

𝟎

!!

𝟎
 

   
(5.27)7 

 
Let's consider the Navier-Stokes equation: 
 
 ∂𝐮

∂𝑡
+ 𝐮 ∙ 𝛁𝐮 = −𝑔𝛁𝜁 +

𝜇
𝜌
𝛁!𝐮   (5.28) 

 
in which the piezometric height 𝜁is defined as: 𝜁 = 𝑥! + 𝑝/𝜌𝑔.  

 

 

																																																								
7 Since the series is bounded, as|k| increases the amplitudes of the modes decrease. The 
term calculated with k=0, u0, is real, but for the convenience of the agebric expansion it is 
expressed as the sum of a complex number and its conjugate whose imaginary part is 
constant. 
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By substituting (5.26) and a similar expression for the piezometric height 
into the Navier-Stokes equation we obtain8:  

From equation (5.29) it is possible to obtain the balance of both the 
averaged and the fluctuating kinetic energy contribution given by the Fourier 
harmonics relative to the wave vector 𝐤. 
As for the averaged kinetic energy, we express the scalar product of equation 
(5.29) times 𝐮𝐧 𝑒!𝐧∙𝐱  and integrate term by term over the entire fluid 
domain with respect to the spatial variables. After straightforward 
calculations we get: 

!
!"

𝐮!𝐧∙ 𝐮𝐧
!

− 𝑔𝐼𝐧𝜁!𝐧 ∙ 𝐮𝐧 + !
!
𝐧 !𝐮!𝐧 ∙ 𝐮𝐧 + 𝐼𝐦 ∙ 𝐮𝐥 𝐮𝐦 ∙ 𝐮𝐧 = 0          (5.30) 

For any given wave vector 𝐧, the sum at left hand side of equation (5.30) 
accounts only for the terms whose wave vectors satisfy the condition: 
 𝐥 +𝐦 + 𝐧 = 𝟎. 

By expressing the Fourier coefficients as the sum of an averaged and 
residual part and applying the ensemble average operation, we obtain: 

 
!
!"

𝐮𝐧 !

!
− 𝑔𝐼𝐧 𝜁!𝐧 ∙ 𝐮𝐧 + !

!
𝐧 ! 𝐮𝐧 ! + 𝐼 𝐦 ∙ 𝐮! 𝐮𝐦 + 𝐮!𝐥𝐮!𝐦 ∙ 𝐮𝐧 = 0  

(5.31) 

 

																																																								
8 The following operations have been applied: 

∇𝜁𝐤𝑒!𝐤⋅𝐱 = 𝐼𝐤𝜁𝐤𝑒!𝐤⋅𝐱 
∇𝐮𝐤𝑒!𝐤⋅𝐱 = 𝐮𝐤⊗  𝐼𝐤 𝑒!𝐤⋅𝐱 
∇!𝐮𝐤𝑒!!𝐤⋅𝐱 = − 𝐤 𝟐𝐮𝐤 𝑒!𝐤⋅𝐱 

𝐮𝐥𝑒!𝐥⋅𝐱∇𝐮𝐦𝑒!𝐦⋅𝐱 = 𝐮𝐥 𝐮𝐦  ⊗  𝐼𝐦 𝑒! 𝐥!𝐦 ⋅𝐱

where the symbol ⊗ represents the usual tensor product. 
 

 𝑑𝐮𝐤
𝑑𝑡

+ 𝑔𝐼𝐤𝜁𝐤 +
𝜇
𝜌
𝐤 !𝐮𝐤 𝑒!𝐤∙𝐱

𝐤

+ 𝐼𝐦 ∙ 𝐮𝐥 𝐮𝐦𝑒! 𝐥!𝐦 ∙𝐱

𝐦  𝐥  

= 0 (5.29) 
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As for the fluctuating kinetic energy, we express the scalar product of 
equation (5.29) times 𝐮′𝐧𝑒!𝐧∙𝐱 and integrate term by term over the entire 
fluid domain with respect to the spatial variables. We get: 

 
 𝑑

𝑑𝑡
𝐮!𝐧 ∙ 𝐮!𝐧

2
+ 𝑔𝐼𝐧𝜁!𝐧 ∙ 𝐮!𝐧 +

𝜇
𝜌
𝐧 !𝐮!𝐧 ∙ 𝐮!𝐧 + 𝐼𝐦 ∙ 𝐮𝐥 𝐮𝐦 ∙ 𝐮′𝐧 = 0 

(5.32) 

 
 
 

 

By expressing the Fourier coefficients as the sum of an averaged and 
residual part and applying the ensemble average operation, after 
straightforward calculations we obtain: 
 

 𝑑
𝑑𝑡

𝐮!𝐧 !

2
+ 𝑔𝐼𝐧 ∙ 𝜁!!𝐧𝐮

!
𝐧
+
𝜇
𝜌
𝐧 ! 𝐮!𝐧 ! + 

+𝐼 𝐦 ∙ 𝐮𝐥 𝐮′𝐦𝐮′𝐧 +𝑚𝑗 𝑢′𝑗𝐥𝐮′𝐧 ∙ 𝐮𝐦 +𝐦 ∙ 𝐮′𝐥𝐮′𝐦 ∙ 𝐮′𝐧  = 0 (5.33) 

 
 
 

 
For any given wave vector 𝐧 , the sum at left hand side of equation (5.33) 
accounts only for the terms whose wave vectors satisfy the condition: 
 𝐥 +𝐦 + 𝐧 = 𝟎. 

Note that in stationary and uniform motion the first term at left hand side of 
equation (5.33) vanishes. While, the second term is different from zero and 
transfers power to the fluctuating modes. 
 

5.4.2   Considerations on the energy balances of Fourier modes    
Considering equations (5.31) and (5.33), it is evident that: 

• the power transfer among Fourier modes, i.e. the interaction among 
different modes, occurs between triples of modes, whose wave 
numbers are linked by the relationship:  𝐥 +𝐦 + 𝐧 = 𝟎. 

• The average kinetic energy is fed by the average piezometric 
gradient, negligibly dissipated by the viscous term, and redistributed 
on the fluctuating motions thanks to the convective term, the last 
term at left hand side of equation (5.31).   
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• The same term is found in equation (5.33). The relative power is 
balanced by the viscous dissipation term, the third term at right hand 
side of equation (5.33), and redistributed among other modes 
through the other addends of the sum 

• At a given Reynolds number, the equilibrium wave vector is defined 
as that wave vector for which the power dissipated by viscosity is 
equal to the power produced by the average piezometric gradient. As 
the Reynolds number increases, i.e. as the viscosity decreases, the 
modulus of the equilibrium wave vector increases and so does the 
spatial frequency, thus determining a “fine-grained” turbulence. 

• The fluctuating modes with a wave number different from the 
equilibrium one transfer power to the other modes through the 
convective term. The modes corresponding to large spatial scales 
(wave vectors with small modulus) give more power to those 
corresponding to small spatial scales (wave vectors with large 
modulus) than that received from these latter. This fact determines a 
general transfer of power from the lower wavenumber modes to 
those with higher wavenumber (energy cascade).	 

• At the low wave number modes, the power supplied from external 
sources is dominant and, apart from a negligible dissipation, is 
almost completely transferred to the modes with higher wave 
number. 
At the high wavenumber modes, on the contrary, viscous dissipation 
prevails on the power supplied from external sources. The high 
wavenumber modes are indeed fed by the power received by the 
lower wavenumber modes. 
Finally, in the intermediate wave number modes, the viscous dissi-
pation and the transfer from the outside are balanced and the 
transfer to and from the fluctuating modes is negligible. 
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5.5. Three-dimensional spectrum of fluctuating kinetic energy of the 
homogeneous and isotropic turbulent flow (Kolmogorov theory) 
 
The ensemble average turbulent kinetic energy 𝐾′  can be represented in 
terms of wavelengths, considering all the possible wavenumber vectors. 
Anyway, assuming that the turbulent flow characteristics are both 
homogeneous and isotropic, i.e. they neither do depend on position nor on 
direction, the ensemble average turbulent kinetic energy 𝐾′  can be repre-
sented in terms of the modulus 𝑘 of the wavenumber vector (𝑘 = 𝐤 ) as: 
 
 

𝐾′ = 𝐸 𝑘 𝑑𝑘
!

!

 
  

(5.34) 

 
being 𝐸 𝑘 𝑑𝑘 the contribution to the ensemble average turbulent kinetic 
energy 𝐾′  due to the wavelengths, whose wavenumbers belong to the 
range 𝑘, 𝑘 + 𝑑𝑘 . The function 𝐸 𝑘  is the spectral density of ensemble 
average turbulent kinetic energy. The function 𝐸 𝑘  describes how the 
ensemble average turbulent kinetic energy 𝐾′  is distributed among the 
wavelengths. The shape of 𝐸 𝑘  depends on the considered turbulent flow 
for small 𝑘 , i.e. for large length scales, representative for the spatial 
dimension of the fluid domain (e.g. the diameter of a pipe, the depth of a 
channel, etc.), while it assumes a unique behaviour for large 𝑘, i.e. for small 
length scale, representative for the fluctuating motion. In other words, the 
behaviour at large 𝑘  is universal, does not depend on the considered 
turbulent flow, because at the smallest length scales the turbulent behaviour 
is universal and consists of the dissipation of the energy transferred from the 
large length scales. The Russian scientist A. N. Kolmogorov first 
acknowledged such a behaviour in turbulent flows and obtained the 
expression for 𝐸 𝑘 . He considered the turbulence homogeneous and 
isotropic and postulated that energy transfer between two very different 
length scales is not probable. He therefore divided the values of k into three 
intervals: the energy production interval at small values of k, the inertial 
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interval at intermediate wavenumber, where energy is transferred from low 
to high wavenumber with negligible production and dissipation, and the 
dissipative range at the largest wave numbers, where energy is dissipated by 
viscosity. Given the hypothesis of Kolmogorov, these ranges are indepen-
dent from each other. Moreover, the inertial and dissipative ranges are 
defined as universal equilibrium ranges, because they depend only on the 
energy produced and transferred from the largest length scales. In these 
ranges, the function 𝐸 𝑘  has to depend only on the dissipated energy per 
unit mass 𝜀 𝜀 = 2𝜈 𝔻′: 𝔻′ , equal to the produced energy, and on the 
viscosity 𝜈. The Kolmogorov length and velocity scales are defined in terms 
of 𝜀, 𝜈 as follows: 
 

𝜆! =
𝜈!

𝜀

!
!
, 𝑢! = 𝜈𝜀

!
! 

  
(5.35) 

In the universal equilibrium range a relation among 𝐸, 𝑘, 𝜀, 𝜈 exists: 
 

𝑓 𝐸, 𝑘, 𝜀, 𝜈 = 0 (5.36) 

The physical dimensions of 𝐸 𝑘  are a velocity square times a length. Then 
by applying the Buckingham theorem and accounting for the Kolmogorov 
length and velocity scales 5.35, the relation 5.36 can be expressed as:  
 
 𝐸 𝑘

𝑢!!𝜆!
= 𝑓∗ 𝑘𝜆!   (5.37) 

   
Equation 5.36 can be simplified for 𝑅𝑒 → ∞ i.e. for 𝜈 → 0. Within this limit 
the function 𝑓 does not depend on 𝜈: 
 
 𝑓 𝐸,𝑘,𝜀 = 0 (5.38) 

 

Hence the famous Kolmogorov power law can be obtained: 

 𝐸

𝜀
!
! 𝑘!

!
!
= 𝑐𝑜𝑛𝑠𝑡   (5.39) 

The validity of the Kolmogorov power law 5.39 can be extended to flows 
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with finite values of the Reynolds number, for wavenumbers 𝑘 belonging to 
the inertial range, i.e. greater than those of the energy production range 
(𝑘 ≫ 1 𝐿) but smaller than those of the dissipation range (𝑘 ≪ 1 𝜆!), as 
shown in figure 5.2. The wavenumber 𝑘 ≈ 1 𝜆! can be considered as the 
start of the dissipation range. For increasing Reynolds number the 
Kolmogorov length scale 𝜆! becomes smaller and smaller and the inertial 
range expands: consequently the validity range of the Kolmogorov power 
law expands too.  

 
Figure 5.2: The energy spectrum E(k) and the Kolmogorov power law for finite Re.        

For Re tending to infinite, 1 𝜆! tends to infinite too and the range of validity                    
of Kolmogorov power law extends to infinite. 

Kolmogorov law has been tested for very high Re numbers and its validity 
has been experimentally confirmed	with good approximation. It should be 
noted that, after some theoretical criticism, Kolmogorov made some 
changes to his approach. In any case, Kolmogorov’s law of power has been 
very successful and today is considered reliable. 
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CHAPTER 6  TURBULENCE MODELS 
 
 
6.1.  The Direct Numerical Simulation (DNS)  
 
Turbulent flows of viscous Newtonian fluid are governed by the Navier 
Stokes equation. In other words, a given turbulent flow of a viscous 
Newtonian fluid is the solution of the Navier-Stokes equation with suitable 
boundary and initial conditions. In principle, one should be able to get the 
mathematical description of the considered turbulent flow by solving the 
Navier-Stokes equation. The problem is that, except for few laminar flow 
cases, the solutions of the Navier-Stokes equation cannot be determined 
analytically but only by means of numerical methods, which often imply 
preliminary treatments on the equation itself. The Direct Numerical 
Simulation (DNS) is the numerical approach to the investigation on 
turbulent flows which does not require any assumption on the Navier-
Stokes equation and solve it as is. 
The main difficulty of the DNS depends on the high number of 
computational cells needed to represent adequately the considered turbulent 
motion. Indeed this number increases sensibly with the Reynolds number. 
In order to obtain a meaningful and accurate description of the flow, the 
order of magnitude of the spatial extension of the smallest subdomain, i.e. 
the computational cell, has to be at least equal to the Kolmogorov length 
scale 𝜆!. The latter is given by the equation 4.55 in terms of the viscosity 𝜈 
and the dissipated energy per unit mass 𝜀 , whose order of magnitude, 
assuming the hypothesis of equilibrium turbulence, is the same as the kinetic 
energy per unit mass and time, extracted from the ensemble average flow 
field. In other words the order of magnitude of the kinetic energy per unit 
mass is: 𝑈! and is extracted from the ensemble average motion during the 
time interval ℒ 𝑈, so the order of magnitude of the kinetic energy per unit 
mass and time is given by: 𝑈! ℒ . Then the Kolmogorov length scale can be 
expressed as: 
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𝜆! =

𝜈!

𝜀

!
!
=

ℒ𝜈!

𝑈!

!
!
   (6.1) 

 
and consequently the ratio ℒ 𝜆! can be expressed in terms of the Reynolds 
number as: 
 
 ℒ

𝜆!
=

𝑈ℒ
𝜈

!
!
= 𝑅𝑒

!
! 

   
(6.2) 

 
Of course the ratio ℒ 𝜆! gives the number of spatial intervals of amplitude  
𝜆! contained in the interval  ℒ, the length scale of the average flow. Then 
the order of magnitude of the volume of the spatial domain of the flow is 
given by ℒ! and the number of subdomains to be considered is given by: 

 
 ℒ

𝜆!

!
= 𝑅𝑒

!
!   (6.3) 

 
The number of subdomains may become huge. Let us think of a turbulent 
flow characterized by 𝑅𝑒 = 104, which is not so high: it needs a number of 
points equal to 10!  which is challenging, mainly for the data post-
processing. Then the realization of the DNS of a given turbulent flow is 
possible or not depending on the available computational resources and 
requires the use of supercomputers.  
Similar conclusions can be obtained if, instead of 𝜆!, a different length scale, 
characteristic for the fluctuating motion, is assumed. In fact, (5.25) was 
obtained by considering 𝓵 the length scale over which variations of fluctua-
ting velocity of order of magnitude equal to 𝐾′  occur: it also shows an 
exponentially increasing function of Re with exponent equal to 3/2.  
It should be noted that in turbulent motion the solution of NS is strongly 
influenced by the initial conditions. It is valid for a specific case considered 
and does not provide any indication even for conditions close to those 
considered. The solution of a single specific case from the applicative point 
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of view can lose interest with respect to the evaluation of statistical 
quantities, such as averages and RMS. Therefore the best use of DNS 
techniques is in our opinion as a virtual laboratory. Indeed the DNS can be 
much more efficient than a physical laboratory, as it is able to determine a 
turbulent solution of the Navier Stokes equation, from which all relevant 
statistical quantities can be obtained. The only limit is the memory of the 
computer. 
 
 
6.2.  The Large Eddy Simulation (LES) 
 
The main idea of the Large Eddy Simulation is that the length scales smaller 
than a given value are not considered in the numerical simulation. This 
omission is realized by filtering the motion equations, i.e. by considering the 
product of the motion equations times a filter function and integrating them 
on the whole fluid domain. By filtering the motion equations, the smallest 
length scales and relative eddy structures are removed and the governing 
equations for the filtered flow field are obtained. The smallest length scales 
are not ignored at all, but are determined in terms of the filtered, resolved 
field by means of suitable closure models, which account for the distribution 
of the turbulent kinetic energy among the spatial scales. The greatest 
removed length scale is the cut off scale, which is chosen so that most 
(~80%) of the turbulent kinetic energy is simulated. Of course, the LES of a 
given turbulent flow tends to the DNS of the same flow for smaller and 
smaller cut off length scales. Boundary and initial conditions must be 
assigned for the single case in exam. 
 
6.2.1  The spatial filter operator 
Let us consider the filtering operation with greater detail.  
Let 𝐺 = 𝐺 𝐫, 𝐱  be a function of the point 𝐱 and of the vector 𝐫 𝐫 = 𝐱 − 𝐱!  
distance between the points 𝐱, 𝐱! . 𝐺  is the filter or kernel function and 
satisfies the fundamental property: 
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𝐺 𝐫,𝐱

𝒟
𝑑!𝐫 = 1   (6.4) 

 
Where 𝒟 is the whole fluid domain. Let 𝑓 𝐱, 𝑡  a flow quantity whatever. 
The filtered quantity is defined as: 
 
 

𝑓 = 𝑓 𝐱− 𝐫, 𝑡 𝐺 𝐫,𝐱
𝒟

𝑑!𝐫  (6.5) 

 
The kernel function is said to be homogeneous if it does not depend on 𝐱 and 
isotropic if it only depends on the vector modulus 𝑟 = 𝐱 − 𝐱!  and not on 
the direction of the distance vector 𝐫. In the following it will be assumed that 
the kernel function is both homogeneous and isotropic: 𝐺 = 𝐺 𝑟 . In order to 
highlight the filtering operation defined by equation 6.5, let us consider the 
singular kernel Dirac 𝛿 in 1D, for the sake of simplicity, defined as: 
 
 

𝛿 𝑟 = 0 𝑓𝑜𝑟  𝑟 ≠ 0;   𝛿 𝑟 → ∞ 𝑓𝑜𝑟  𝑟 → 0;   𝛿 𝑟 𝑑𝑟
!

!
= 1   (6.6) 

 
The Dirac 𝛿 is a singular function, vanishing everywhere except at 𝑥 = 𝑥!,  
where it tends to infinity, whose definite integral on the whole real axis is 
finite and equal to 1.  The most important property of the Dirac 𝛿 is that the 
filtered function 𝑓  coincides with the function itself: 
 
 

𝑓(𝑥, 𝑡) = 𝑓 𝑥− 𝑟, 𝑡  𝛿 𝑟  𝑑𝑟
!

!
= 𝑓 𝑥, 𝑡  (6.7) 

 
A more regularized version of the Dirac 𝛿 is the rectangular window (figure 6.1): 
 
 𝐺 𝑟 = 0   𝑓𝑜𝑟  𝑟 >

∆
2
;   𝐺 𝑟 =

1
∆

 𝑓𝑜𝑟   𝑟 ≤
∆
2

   (6.8) 

 
which can be applied on finite domains. ∆ is the basis of the rectangle. 
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The rectangular window tends to the Dirac 𝛿 function for vanishing ∆.  
The filtered function 𝑓  coincides with the average value of the function 
over the interval ∆ (figure 6.1). 
Kernel functions may have different shapes, e.g. triangular, gaussian, etc., 
which affect the way with which the function is filtered. A kernel function 
which removes exactly the contributions due to the wavenumbers 𝑘 greater 
than the cut off wavenumber 𝑘!, leaving unaltered the contributions of the 
wavenumbers 𝑘 < 𝑘!, is the sharp cut off kernel: 
 
 𝐺 𝑟 =

1
𝜋𝑟

 sin
𝜋𝑟
∆

    (6.9) 

 

 
Figure 5.1: The rectangular window kernel. 

 
Which eliminates exactly all the wavenumbers k greater than the cut off 
wavenumber 𝑘! = 𝜋 ∆. 
	
6.2.2  Properties of the filtered and residual variable 
The difference between the quantity 𝑓  and the filtered quantity 𝑓  is 
defined as the residual 𝑓′: 
 

 𝑓! = 𝑓 − 𝑓  (6.10) 

by applying the filtering operation to the residual 𝑓!, the filtered residual 𝑓′  
is obtained: 
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 𝑓′ = 𝑓 − 𝑓  (6.11) 

The latter does not vanish generally9, i.e. the application of the filter to the 
filtered function 𝑓  does not give back the filtered function. In other 
words, the filtering operation does not act as the ensemble average 
operation. 
Furthermore, the ensemble average operator commutes, i.e. it allows the 
inversion of sequence of operations with respect to spatial or temporal 
differential operators.	 
 
6.2.3  The filtered equations 
Similarly to the Reynolds procedure, the filtering operation is applied to the 
equations of motion, so that the filtered equations for the new filtered 
dependent variables are obtained.  
Let us consider the mass conservation equation for an incompressible 
turbulent flow and let us filter both sides: 
 
 𝛁 ∙ 𝐮 = 𝟎 (6.12) 

For the sake of simplicity, the filter is considered homogeneous and iso-
tropic. The spatial differentiation can be exchanged with the filtering ope-
ration: 
 
 𝛁 ∙ 𝐮 = 0  (6.13) 
 
Equation 6.13 is the mass conservation equation for the incompressible 
filtered velocity fields. Expressing the velocity field as the sum of the filtered 
and residual velocity fields, the mass conservation equation for an income-
pressible turbulent flow takes the form: 
 
 𝛁 ∙ 𝐮 = 𝛁 ∙ 𝐮 + 𝐮! = 𝛁 ∙ 𝐮 + 𝛁 ∙ 𝐮! = 0 (6.14) 

																																																								
9 Obviously, the residual variable of  the sharp cut-off filter is zero. 
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Accounting for equation 6.13, it follows that the residual velocity field is also 
divergence free. 
Let us apply the filtering operation to the Navier-Stokes equation term by 
term: 
 
 𝜕 𝐮

𝜕𝑡
+ 𝛁 ∙ 𝐮⊗ 𝐮 = −

1
𝜌
𝛁 𝑝 + 𝐟! +

𝜇
𝜌
𝛁𝟐 𝐮  

  
(6.15) 

 
The term 𝐮⊗ 𝐮  is usually expressed as: 
 
 𝐮⊗ 𝐮 = 𝐮 ⊗ 𝐮 +

1
𝜌
𝕋!" (6.16) 

 
being 𝕋!" the second order subgrid stress tensor, which accounts for the 
difference between 𝐮⊗ 𝐮  and 𝐮 ⊗ 𝐮 . Taking into account 6.16, the 
filtered Navier-Stokes equation can be rewritten as: 

 
 𝜕 𝐮

𝜕𝑡
+ 𝛁 ∙ 𝐮 ⊗ 𝐮 = −

1
𝜌
𝛁 𝑝 + 𝐟! +

𝜇
𝜌
𝛁𝟐 𝐮 −

1
𝜌
𝛁 ∙ 𝕋!" (6.17) 

 

The second order subgrid stress tensor has to be expressed in function of 
the filtered variables. Joseph Smagorinsky, an American meteorologist, 
proposed the following closure equation: 
 
 𝕋!" = 𝕋!"! +

1
3
𝑇𝑟 𝕋!" 𝕀, 𝕋!"! = −2𝜌𝜈! 𝔻  (6.18) 

 
being 𝕋!"!  the residual second order subgrid stress tensor and 𝑇𝑟 𝕋!"  the 
sum of the main diagonal elements of 𝕋!"! . 𝕀 is the identity second order 
tensor and 𝔻  symmetric part of the deformation velocity second order 
tensor, defined in terms of the filtered velocity field. Finally, 𝜈!  is the 
turbulent subgrid viscosity. Assuming the Smagorinsky closure equation 
6.18, the filtered Navier-Stokes equation can be rewritten as: 
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 𝜕 𝐮
𝜕𝑡

+ 𝛁 ∙ 𝐮 ⊗ 𝐮 = −
1
𝜌
𝛁𝑝 + 𝐟! +

𝜇
𝜌
𝛁𝟐 𝐮 + 2𝜈!𝛁 ∙ 𝔻  (6.19) 

 
The pressure 𝑝 is defined as: 𝑝 = 𝑝 + 𝑇𝑟 𝕋𝑠𝑔 3. 
According to Smagorinsky, the turbulent subgrid viscosity can be defined as: 
 
 𝜈! = 𝐶!Δ! 𝔻 : 𝔻  (6.20) 
 
Where Δ is the width of the rectangular window filter (as shown e.g. in 
figure 6.1) and represents the order of magnitude of the largest non resolved 
lengthscale. 𝐶! is the Smagorinsky constant, which for homogeneous and 
isotropic turbulence assumes the value 𝐶! = 0.18. 
 
 
6.3.  Reynolds average Navier-Stokes based models 
 
The Reynolds average Navier-Stokes (RANS) equation 4.9 is the starting 
point for many turbulence models. The RANS models represent turbulent 
hydrodynamic fields in terms of ensemble averaged variables. One of the 
advantages of the RANS models, having average quantities as unknowns, 
consists in the possibility of imposing conditions that are valid only for the 
average quantities, such as for example stationarity and symmetry. 
The problem is solved numerically once a suitable closure model is adopted 
for the Reynolds stress tensor 𝐮′⊗ 𝐮′ . The latter can be expressed in 
terms of the ensemble average velocity field by means of the Boussinesq’s 
hypothesis: 
 
 𝐮′⊗ 𝐮′ =

2
3
𝐾′ 𝕀 + 𝐮′⊗ 𝐮′ ! , 𝐮′⊗ 𝐮′ ! = −2𝜈! 𝔻  (6.21) 

 
Where 𝐾′ = < 𝐮! ∙ 𝐮! > 3  is the ensemble average of the turbulent kinetic 
energy,  𝐮′⊗ 𝐮′ !  the residual Reynolds stress tensor and 𝜈!  is the 
turbulent viscosity. Thanks to the Boussinesq’s decomposition 6.21 the 
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RANS equation 4.9 can be rewritten as: 

 
 𝜕 𝐮

𝜕𝑡
+ 𝐮 ∙ 𝛁 𝐮 = −

𝛁𝑝
𝜌
+ 𝐟! +

𝜇
𝜌

 𝛁! 𝐮 + 2𝛁 ∙ 𝜈! 𝔻    (6.22) 

 
Where the pressure 𝑝 is defined as: 𝑝 = 𝑝 + 2 𝐾′ 3. 
The core of the Boussinesq’s hypothesis is the definition of the turbulent 
viscosity 𝜈!. The complexity and the reliability of the RANSE-based model 
depends on the additional equations used to obtain the turbulent viscosity.  
 
6.3.1   Algebraic models 
The turbulent viscosity is defined by the algebraic equation: 
 

 𝜈! = 𝑘!𝑢!𝛿   (6.23) 

 Where 𝑢! , 𝛿 and  𝑘𝑎 are respectively the characteristic length, the velocity 
scale and a constant, characteristic for the considered flow.  
Algebraic models are the simplest and work only for simple flows, mainly 
for uniform turbulent flows for which a spatial dimension is prevailing on 
the others, as open channel flows, jets, etc. These simple models are widely 
used e.g. in modelling river flows.  
A very famous algebraic model, which permitted to obtain good results in 
turbulent pipe and open channel flows, is the mixing length model. The 
latter, due to Prandtl, is generally adopted for a shear flow characterized by 
the ensemble average velocity component 𝑢  depending on the coordinate 
𝑦 defined along the direction perpendicular to the velocity: 
 
 𝜈! = 𝜅!ℓ!

𝜕 𝑢
𝜕𝑦

   (6.24) 

The modulus is applied to ensure that 𝜈! is positive. 𝜅 is the Von-Karman 
constant, while ℓ is the mixing length, a length scale representative for the 
fluctuating flow field. Considering e.g. the turbulent uniform flow on a flat 
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plate, the mixing length ℓ can be assumed to be proportional to the distance 
𝑦 from the flat plate along the perpendicular direction to it. One of the most 
important results obtained applying the mixing length hypothesis 6.24 is the 
logarithmic velocity profile in uniform turbulent pipes and open channel 
flows. 
 
6.3.2   The 𝐾 − 𝜖 model     
The algebraic model gives a very simplified description of the turbulent 
viscosity, acceptable only for uniform turbulent shear flows. As soon as the 
turbulent flow becomes more complicated, for example, due to the 
complexity of the flow domain geometry, a correspondingly more complex 
turbulent model has to be used. A very popular one is the 𝐾 − 𝜖 model, 
where, for the sake of simplicity, 𝐾 indicates the ensemble average turbulent 
kinetic energy: 𝐾 = 𝐾′ , with dimension 𝐿!𝑇!!, and 𝜖  the dissipated 
turbulent kinetic energy per unit mass and time: 𝜖 = 2𝜈 𝔻!:𝔻′ , with 
dimension  𝐿!𝑇!!. 
The turbulent viscosity can be modelled after Prandtl (1945)10 and followers 
as: 
 

𝜈! = 𝑘!
𝐾𝟐

𝜖  
   

(6.25) 
 
Where 𝑘! is a constant. In turn 𝐾, 𝜖 can be determined by solving suitable 
equations. 
As for the determination of 𝐾 , the balance of the ensemble average 
turbulent kinetic energy average turbulent kinetic energy 5.17:  
 

																																																								
10 Prandtl proposed to consider the turbulent viscosity 𝜈! proportional to 𝐿!!𝐾!/!, where 
𝐿  is a length characterizing the large-scale turbulent motion. Furthermore, for high 
Reynolds, the viscous dissipation tends to a limit independent of the viscosity itself but 
linked to 𝐾 and 𝐿. So dimensionally 𝜖 can be expressed by 𝐿!!𝐾!/! and from which, by 
eliminating 𝐿, equation 6.25 is obtained. 
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 𝜕〈𝐾′〉
𝜕𝑡

+ 𝐮 ∙ 𝛁𝐾′ = −
1
𝜌
𝛁 ∙  𝑝!𝐮! − 2𝜇 𝔻′𝐮! − 𝐮!⊗  𝐮! :𝛁 𝐮 −

2𝜇
𝜌

𝔻′: 𝔻′     

 

is adopted with the following modifications.   
With reference to equation 5.17, the convective term at left hand side is 
expressed as: 
 
 𝐮 ∙ 𝛁𝐾′ = 𝛁 ∙ 𝐮 𝐾 + 𝛁 ∙ 𝐮′𝐾′    (6.26) 
 
The last term at right hand side can be inserted in the first term at right hand 
side of equation 5.17.  
Moreover, introducing the diffusive term: 
 
 𝜌

𝜈!
𝜎!
𝛁𝐾 = − 𝑝!𝐮! + 2𝜇 𝔻!𝐮! − 𝐮′𝐾′  (6.27) 

Equation 5.17 assumes the form: 
 
 !"

!"
+ 𝛁 ∙ 𝐮 𝐾 = 𝛁 ∙ !!

!!
𝛁𝐾 − 𝐮!⊗  𝐮! :𝛁 𝐮 − !!

!
𝔻′: 𝔻′     (6.28) 

 
  

Where 𝜎! is a dimensionless constant.  
The production term − 𝐮!⊗  𝐮! :𝛁 𝐮  , using the Boussinesq’s decompo-
sition 6.21, can be expressed as: 
 

 − 𝐮!⊗  𝐮! :𝛁 𝐮 = 2 𝜈! 𝔻 : 𝔻 	≡P (6.29) 

Where P is known as production of turbulent kinetic energy. Accounting for 
previous consideration, the modified balance equation for the ensemble 
average turbulent kinetic energy 𝐾!  can be rewritten as: 
 
 𝜕𝐾

𝜕𝑡
+ 𝛁 ∙ 𝐮 𝐾 = 𝛁 ∙

𝜈!
𝜎!
𝛁𝐾 + 2 𝜈! 𝔻 : 𝔻 − 𝜖  (6.30) 
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As for the determination of 𝜖 the exact equation for this quantity could be 
obtained after a cumbersome and tedious calculation with additional 
unknown variables. Hence, it is preferable to use an empirical equation, 
defined as follows: 
 
 !"

!"
+ 𝛁 ∙ 𝐮 𝜖 = 𝛁 ∙ !!

!!
𝛁𝜖 + 2 𝑐!!  𝜈!

𝔻 : 𝔻
!

− 𝑐!!
!!

!
      (6.31)  

 

 

The 𝐾 − 𝜖 model consists of equations 6.25, 6.30 and 6.31. They depend on 
the five empirical dimensionless constants  𝑘! , 𝜎𝐾, 𝜎𝜀, 𝑐1𝜀, 𝑐2𝜀 , which must 
be chosen carefully in order to reproduce a given turbulent flow.  
This is exactly the limitation of this model: it needs an accurate calibration, 
which is valid for the considered case, i.e. it does not have a universal 
validity. 
 
6.3.3   The Reynolds stress model 
In the RANS equations, the six components of the Reynolds stress tensor 
represent additional unknowns, which can be determined by using six 
additional equations. Such a turbulence model, not based on the 
Boussinesq’s hypothesis, is the Reynolds stress model. The additional 
equations for the stress components can be obtained by means of a rather 
cumbersome procedure, which will be illustrated in the following. Let us 
subtract the RANS equation from the Navier-Stokes equation term by term, 
both written in component form. The equation for the residual velocity field 
𝑢!! is obtained: 
 

 𝜕𝑢!!

𝜕𝑡
+

𝜕
𝜕𝑥!

𝑢!! 𝑢! + 𝑢! 𝑢!! + 𝑢!!𝑢!! = −
1
𝜌
𝜕𝑝!

𝜕𝑥!
+ 𝜈

𝜕!𝑢!!

𝜕𝑥!𝜕𝑥!
+
𝜕 𝑢!!𝑢!!

𝜕𝑥!
   (6.32) 
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Let us multiply equation 6.32 times 𝑢!!: 
 

 
𝑢!!
𝜕𝑢!!

𝜕𝑡
+ 𝑢!!

𝜕
𝜕𝑥!

𝑢!! 𝑢! + 𝑢! 𝑢!! + 𝑢!!𝑢!!

= −
𝑢!!

𝜌
𝜕𝑝!

𝜕𝑥!
+ 𝜈𝑢!!

𝜕!𝑢!!

𝜕𝑥!𝜕𝑥!
+ 𝑢!!

𝜕 𝑢!!𝑢!!

𝜕𝑥!
 

      
(6.33) 

 

Then equation 5.33 is rewritten changing index 𝑖 with 𝑗 and 𝑗 with 𝑖: 

Summing and ensemble averaging equations 6.33 and 6.34, the following 
equation is obtained for the Reynolds stress 𝑢!!𝑢!! : 

The Reynolds stress equation 6.35 is the most complete classical turbulence 
model. Indeed, the eddy-viscosity hypothesis is avoided and every single 
component of the Reynolds stress tensor is directly computed.  
The Reynolds stress model uses the exact stress transport equation and 
offers better accuracy than eddy-viscosity based turbulence models at a 
lower computational price than Direct Numerical and Large Eddy 
Simulations. 
Nonetheless, equation 6.35 is very complicated. The most complex aspect is 
the need of suitable closure equations for the third order correlation term at 
left hand side, the pressure-velocity correlation and the dissipation term at 
right hand side. 

 𝑢!!
𝜕𝑢!!

𝜕𝑡
+ 𝑢!!

𝜕
𝜕𝑥!

𝑢!! 𝑢! + 𝑢! 𝑢!! + 𝑢!!𝑢!!

= −
𝑢!!

𝜌
𝜕𝑝!

𝜕𝑥!
+ 𝜈𝑢!!

𝜕!𝑢!!

𝜕𝑥!𝜕𝑥!
+ 𝑢!!

𝜕 𝑢!!𝑢!!

𝜕𝑥!
 

 (6.34) 

    

 
       

𝜕 𝑢!!𝑢!!

𝜕𝑡
+ 𝑢!

𝜕 𝑢!!𝑢!!

𝜕𝑥!
+ 𝑢!!𝑢!!

𝜕 𝑢!
𝜕𝑥!

+ 𝑢!!𝑢!!
𝜕 𝑢!
𝜕𝑥!

+
𝜕 𝑢!!𝑢!!𝑢!!

𝜕𝑥!

= 𝜈
𝜕! 𝑢!!𝑢!!

𝜕𝑥!𝜕𝑥!
−

𝑢!!

𝜌
𝜕𝑝!

𝜕𝑥!
+
𝑢!!

𝜌
𝜕𝑝!

𝜕𝑥!
− 2𝜈

𝜕𝑢!!

𝜕𝑥!

𝜕𝑢!!

𝜕𝑥!
       

(6.35) 
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CHAPTER 7     RECENT PERSPECTIVES IN THE TURBULENCE       
              STUDY AND THE DETERMINISTIC CHAOS 
 
 
7.1.  Prologue  
 
In 1963, the meteorologist Edward N. Lorenz of the Massachusetts Institute 
of Technology discovered that the following nonlinear system of first order 
ordinary differential equations: 

 𝑑𝑥!
𝑑𝑡

 = 𝑎 𝑥! − 𝑥!  

 

         
𝑑𝑥!
𝑑𝑡

 = 𝑏𝑥! − 𝑥! − 𝑥!𝑥! 

 
𝑑𝑥!
𝑑𝑡

 = 𝑥!𝑥! − 𝑐𝑥! 

  
 
 

(7.1) 

where 𝑎, 𝑏, 𝑐 are given parameters, has solutions with apparently irregular, 
disordered, and unforeseeable behaviour, although it is a deterministic 
system with no random variables. Lorenz was a meteorologist who knew 
mathematics and had considered this system in order to simulate and predict 
the actual functioning of atmospheric phenomena on a simplified level. 
Lorenz observed that, starting with slightly different initial conditions, were 
obtained completely different solutions. The solutions, even defined tra-
jectories in the three-dimensional space  𝑂𝑥!𝑥!𝑥! , draw an object now 
named the Lorenz’s butterfly (figure 7.1) in honour of Lorenz. It has a well-
defined shape with two wings. The state of the system at the generic instant, 
that is the set of values assumed by the solution at that generic instant, 
oscillates over time from one wing to the other without any rule. It moves in 
an apparently random way, erratic, unpredictable.  
This discovery seemed to contradict the statement attributed to Laplace, 
which until then had never been never questioned, that given the precise know-
ledge of the initial conditions, it should be possible to predict the future of the universe. 
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Figure 7.1: The Lorenz’s butterfly. 

Source: https://commons.wikimedia.org/wiki/File:Lorenz_system_r28_s10_b2-6666.png 

 
In other words by assigning the initial conditions it is possible to foresee the 
future behaviour of a phenomenon for which the governing deterministic 
equations are known. The problem is with what precision the initial 
conditions have to be known and the calculations have to be made. In this 
sense, Laplace’s statement is still valid.  
Lorenz’s discovery put into discussion the scenario of Landau (1908-1968) 
and Hopf (1902-1983) relative to the mechanism of the transition to 
turbulence. According to Landau and Hopf, a weakly turbulent fluid, i.e. at 
the beginning of the transition, is described by the superposition of a small 
number of modes, the excited or first unstable ones, showing no sensitivity 
to the initial conditions. The number of excited modes increases by 
successive bifurcations from the already excited modes to new ones with 
increasing Reynolds number. The excited modes are more and more 
distributed over the whole spectrum as the Reynolds number increases.   
Some of them have their periodicity in irrational ratio and their overlapping 
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generates non-periodic but quasi-periodic trends, thus justifying the non-
periodicity of the phenomenon. In 1971 the two scientists David Ruelle and 
Floris Takens hypothesized a turbulent flow mechanism similar to that 
found by Lorentz with his simple dynamical system in opposition to the 
well-consolidated Landau-Hopf theory of the continuous excitation of 
Fourier’s modes. In 1979, Lorentz at a meteorological meeting in 
Washington presented his paper Can the beating of butterfly wings in Brazil cause a 
tornado in Texas?  These words have had a huge resonance, making the theory 
of deterministic chaos very popular. Lorenz realized the connection between 
aperiodicity and unpredictability and convinced himself that long-term 
weather forecasts were impossible. Initial variables cannot be known exactly, 
and in any case, even with the help of powerful computers, the unavoidable 
approximated calculation would have caused enormous changes in the 
results. Today, despite the great development of the computational 
resources, we know that Lorenz was right; weather forecasts more advanced 
than a week are unreliable.  
Let’s go back to Ruelle and Takens. They introduced the concept of strange 
attractor for objects such as the Lorenz’s butterfly. These objects are 
attractors in the sense that they have a basin of attraction: i.e. if the initial 
conditions belong to the basin, the solution is attracted to it and after a 
while it goes to the attractor and remains there indefinitely, seemingly 
wandering without rules. These attractors are, however, special: this is why 
they are defined strange. They have not an integer geometric dimension: 
indeed they are neither points, nor lines, nor surfaces, nor volumes. They are 
something in between, that is, they have a non-integer, fractal geometric 
dimension. Two trajectories, even originating from two almost identical 
initial conditions, separate significantly after a while, moving away from each 
other exponentially with time.  
Lorenz was able to observe the strong dependence on initial conditions with 
his model, i.e. the chaotic behaviour. Starting from different initial 
conditions one gets completely different trajectories in the attractor and, if 
one does not know the initial conditions, cannot say at a given instant of 
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time which is the state of the system, i.e. which is the position of the 
trajectory on the attractor. 
Research in this field since then on has continued. Considering the 
equations governing a particular phenomenon, one tries to characterize the 
attractor, or the attractors, to evaluate whether or not it is a fractal object, 
i.e. wheter it is strange or not and whether the state of the system belongs to 
certain zones of the attractor more than others.  
In this way, one can estimate the probability that the state of the system 
stays in a given zone of the attractor rather than in another. This latter 
aspect is a positive and constructive approach, in order to overcome the 
problem of the strong dependence on the initial conditions.  
In what follows, we will try to simplify and present a few arguments and 
concepts used in the deterministic chaos theory. 
 
 
7.2.  Differential equations systems 
 
7.2.1   Hydrodynamic Analogy  
It is worth recalling the fundamentals of the theory of linear differential 
equations systems. Let consider a system of linear differential equations with 
real constant coefficients 𝑎!": 
 
 𝑑𝑥!

𝑑𝑡
 = 𝑎!"𝑥!          𝑖 = 1,… ,𝑚, 𝑗 = 1,… ,𝑚  (7.2) 

 
In vector form it can be expressed as: 
 
 𝑑𝐱

𝑑𝑡
 = 𝔸 𝐱  (7.3) 
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Where 𝔸 is the 2nd order tensor with scalar components 𝑎!"  and 𝐱 is the 
vector representing a position in the m-dimensional space: 
 
 𝐱 = 𝑥!, 𝑥!,… , 𝑥!   (7.4) 
 

 
Figure 7.2: Vectors 𝐱,𝐮,𝑑𝐱,𝑑𝐮 in three-dimensional space. 

 

𝑑𝐱 𝑑𝑡 represents the velocity 𝐮 with which the position defined by 𝐱 moves 
in the m-dimensional space as time goes by. A hydrodynamic analogy with 
the motion of a fluid body can be introduced as follows. The vector 𝐮 can 
represent the velocity of the fluid particle: 
 
 𝑢!  = 𝑎!"𝑥!  (7.5) 
 
Then the deformation velocity can be expressed as: 
 
 𝑑𝑢!  = 𝑎!"𝑑𝑥!  (7.6) 
or in vector form: 
 
 𝑑𝐮 = 𝔸 𝑑𝐱  (7.7) 
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The tensor 𝔸 can be expressed as the sum of the symmetric tensor 𝔻 and 
the antisymmetric tensor 𝕎: 
 
 𝑑𝐮 = 𝔻 +𝕎 𝑑𝐱 = 𝔻 𝑑𝐱 +𝕎 𝑑𝐱  (7.8) 
 
The fluid flow expressed by equation 7.2 is a peculiar one. In fact, thanks to 
the fact that the coefficients 𝑎!" are constant with respect to space and time, 
the flow structure does not depend on the spatial scale. This observation 
holds for the deformation velocity 7.8 too.  
 
7.2.2   Eigenvalues and Eigenvectors  
According to equation 7.5, the vector 𝐮  can be seen as the linear 
transformation of the vector 𝐱. In general vector 𝐮 is not parallel to vector 
𝐱. If 𝐮 = 𝐮∗ and 𝐱 = 𝐱∗ are parallel, the following condition is satisfied: 
 

 𝐮∗  = 𝔸 𝐱∗ = 𝜆 𝐱∗  (7.9) 

Where 𝜆 is a scalar constant and it is defined as the eigenvalue of the 2nd 

order tensor 𝔸.  
The vector 𝐱∗ is defined eigenvector of the 2nd order tensor 𝔸. Eigenvalues 
can be real or complex. In case of a complex eigenvalue, the corresponding 
eigenvector is also complex. As 𝔸 is real, for each complex eigenvalue and 
eigenvector, the corresponding conjugated eigenvalue and eigenvector exist. 
 
7.2.3   Exponential function of a matrix 
Given an 𝑛×𝑛  square matrix 𝔸  and a function 𝑓 = 𝑓 𝑥 , that can be 
developed in power series: 
 

𝑓 𝑥  = 𝑐𝑖

∞

𝑖=0

𝑥𝑖  (7.10) 

 
the matrix function 𝑓 = 𝑓 𝔸  is defined as follows: 
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𝑓 𝔸  = 𝑐𝑖

∞

𝑖=0

𝔸𝑖  (7.11) 

 
Let us consider the function 𝑓 = 𝑒!, whose power series expansion is given 
by: 
 
 

𝑒!  = 1 +
𝑥𝑖

𝑖!

∞

𝑖=0

 
  

(7.12) 

 
The corresponding matrix function 𝑒𝔸 is then given by: 
 
 

𝑒𝔸  = 𝕀 +
𝔸𝑖

𝑖!

∞

𝑖=0

 
  

(7.13) 

Where 𝕀 is the unity matrix.  
If 𝔸 is diagonal (e.g. the matrix derives from a diagonalization): 
 
 

𝔸 =
𝜆! ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆!

 
  

(7.14) 

 
where 𝜆!, 𝜆!,… are the eigenvalues of the matrix 𝔸. 
Then: 
 
 

𝑒𝔸  =
𝑒𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒𝜆𝑛

 
  

(7.15) 

 
and 
 
 

𝑒𝔸𝑡  =
𝑒𝜆1𝑡 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒𝜆𝑛𝑡

 
  

(7.16) 
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The time derivative of the matrix function 𝑒𝔸𝑡 can be calculated as: 
 
 𝑑𝑒𝔸"

𝑑𝑡
 = 𝔸 𝑒𝔸" 

  
(7.17) 

 
The previous result can be used to express the solution of a linear ordinary 
differential equations system with constant coefficients: 
 
 𝐱 = 𝐱! 𝑒𝔸"  (7.18) 
 
where 𝐱! is the value of 𝐱 at time 𝑡= 0. According to equation 7.18, the 
tensor 𝑒𝔸𝑡, that is the tensor obtained assuming the scalar components to be 
the elements of the matrix  𝑒𝔸𝑡 , transforms the position vector at time  
𝑡 = 0, 𝐱!, in the position vector 𝐱 at the generic time 𝑡. The Jacobian matrix 
𝜕𝐱 𝜕𝐱0 coincides with 𝑒𝔸𝑡, does not depend on 𝐱! and 𝐱 and has the same 
eigenvalues. The Jacobian determinant is given by: 
 

 𝜕𝐱
𝜕𝐱!

 = 𝑒!!!𝑒!!!… 𝑒!!! = 𝑒!" 𝔸 !  (7.19) 

 
It is well known that the Jacobian determinant represents the ratio of the 
hyper volume at time 𝑡 and the hypervolume at time 𝑡!. 
If 𝑡𝑟 𝔸 = 0  the value of the hypervolume is conserved with respect to time 
and the system is defined as conservative, while if 𝑡𝑟 𝔸 < 0 the value of the 
hypervolume decreases with time and the system is defined as dissipative. 
In the hydrodynamic analogy between deterministic systems and fluid flow 
having a corresponding kinematics, the conservative system expresses or 
represents the incompressible fluid; the dissipative system (of volumes) 
represents a contracting compressible flow. 
 
7.2.4   Definition of attractor  
In a deterministic dissipative system, an attractor is an invariant and 
bounded subset of the space of the states to which the trajectories converge; 
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the trajectories start from another subset (called attraction basin), that 
contains the attractor. This means that the attractor must: a) possess a basin 
of attraction; b) not vary with time and cannot be divided into several 
attractors. From the second condition it follows that any area of the 
attractor will sooner or later be visited by the state of the system in its 
temporal evolution (otherwise the attractor would be divisible). 
  
 
7.3.  Lyapunov exponents 
 
7.3.1   The first Lyapunov exponent  
Let’s consider the linear differential system: 
 
 𝑑𝐱

𝑑𝑡
 = 𝔸 𝐱  (7.20) 

 
Let us consider two trajectories in the space of states, whose distance at time 
𝑡 = 0 is 𝛿𝐱! , being 𝛿𝐱!  an infinitesimal vector corresponding to a small 
perturbation of the state 𝐱!. At generic time 𝑡 the distance becomes 𝛿𝐱 𝑡 . 
 

 

Figure 7.3: Two trajectories in the state space with distance 𝛿𝐱 𝑡 . 
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The equations governing the evolution of 𝛿𝐱 𝑡  are: 
 
 𝑑𝛿𝐱 𝑡

𝑑𝑡
 = 𝔸 𝛿𝐱 𝑡  

 (7.21) 

and the solutions are: 
 
 𝛿𝐱 𝑡  = 𝛿𝐱! 𝑒𝔸"   (7.22) 
 
Let’s sort the eigenvalues of 𝔸 in descending order: 𝜆!, 𝜆!,… , 𝜆!. In case of 
complex eigenvalues, the real part is considered. The modulus of 𝛿𝐱 𝑡  
depends on its components 𝛿𝑥! 𝑡  but, as time increases, the contribution 
of 𝛿𝑥! 𝑡  prevails over the others: 
 
 𝛿𝑥! 𝑡

𝛿𝑥! 𝑡
 =

𝛿𝑥!!
𝛿𝑥!"

 𝑒 !!!!! !   (7.23) 

 
Indeed, the exponents 𝜆! − 𝜆! are negatives and the exponential functions 
 𝑒 𝜆𝑘−𝜆1 𝑡 decrease with 𝑡. Let us assume that 𝛿𝐱! is parallel to the direction 
of the eigenvector corresponding to the first eigenvalue. Then the modulus 
evolves as: 
 
 𝛿𝐱 𝑡   = 𝛿𝐱! 𝑒𝔸" = 𝛿𝐱!  𝑒!!!  (7.24) 

 
From which: 
 
 𝛿𝐱 𝑡

𝛿𝐱!
  =  𝑒!!!  (7.25) 

 
and 
 
 

𝜆! =
1
𝑡
ln

𝛿𝐱 𝑡
𝛿𝐱!

 
 (7.26) 

 
 
The first eigenvalue 𝜆! can be obtained by calculating the logarithm of the 
deformation at time 𝑡 divided by 𝑡. 
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Let us divide the time 𝑡  in 𝑁  small intervals 𝛿𝑡  and let’s consider the 
sequence: 
 
 𝑡! = 𝛿𝑡, 𝑡! = 2𝛿𝑡,… , 𝑡 = 𝑁𝛿𝑡  (7.27) 

 
Equation 7.25 becomes: 
 
 𝛿𝐱 𝑡!

𝛿𝐱!
  
𝛿𝐱 𝑡!
𝛿𝐱 𝑡!

…
𝛿𝐱 𝑡

𝛿𝐱 𝑡!!!
=  𝑒!!!"#  (7.28) 

 

 
From which  
 
 

𝜆! =
1
𝑁𝛿𝑡

ln
𝛿𝐱 𝑡!
𝛿𝐱 𝑡!!!

!

!!!

=
1
𝑁

1
𝛿𝑡
ln

𝛿𝐱 𝑡!
𝛿𝐱 𝑡!!!

!

!!!

=
1
𝑁

𝜆!!

!

!!!

 
  
  (7.29) 
 

 
The 𝜆!!  𝑗 = 1,… ,𝑁  are calculated for each 𝑡! , perturbing the position 
reached by the trajectory 𝐱 𝑡!  at the instant 𝑡! in the direction of the first 
eigenvector and evaluating the deformation ratio 𝛿𝐱 𝑡! 𝛿𝐱 𝑡!!! . In 
linear systems, the direction of the eigenvectors does neither change, nor 
does the deformation ratio. All the 𝜆!! are equal to 𝜆!.  
The previous procedure can be used for a nonlinear deterministic system.  
The modules of the perturbative vectors are infinitesimal and, at each step 
of the procedure, it is possible to linearize the equations that regulate their 
temporal evolution. Nevertheless, in non-linear systems at each step the 
linearized system changes and, consequently, the direction of the 
eigenvectors and the deformation ratio change. Equation 7.29 should be 
considered in the limit of 𝑁 → ∞. The first Lyapunov exponent is thus 
given by: 
 
 

𝜆! = lim
!→!

1
𝑁𝛿𝑡

ln
𝛿𝐱 𝑡!
𝛿𝐱 𝑡!!!

!

!!!

 
  
  (7.30) 
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7.3.2   The subsequent Lyapunov exponents  
The number of Lyapunov exponents: 
 
 𝜆!, 𝜆!,… , 𝜆!   (7.31) 

 
is equal to the dimensions of the state space, i.e. the number of differential 
equations of the first order. The second Lyapunov exponent 𝜆!, can be 
obtained using the same procedure as the first, but erasing the component 
of  𝛿𝐱! along the first eigenvector: 
 
 𝛿𝐱! = 0, 𝛿𝑥!", 𝛿𝑥!",…   (7.32) 

 
Thereby 𝛿𝐱! cannot stretch or shrink in the direction of the first eigenvector 
and the previous procedure leads to the determination of the second 
Lyapunov exponent. It is possible to continue in this way to obtain the 
subsequent exponents, but a better way can be followed. In fact, the 
evolution of an infinitesimal surface can be considered. The sum of the first 
two exponents can be obtained as: 
 
 𝜆! + 𝜆! = lim

!→!

1
𝑁𝛿𝑡

ln
𝛿σ 𝑡!
𝛿σ 𝑡!!!

!

!!!

   (7.33) 
 

With this aim, if a linear system and two infinitesimal vectors 𝛿𝐱 𝑡  and 
𝛿𝐲 𝑡  parallel to the directions of the two first eigenvectors are considered, 
the area of the surface defined by the two vectors is proportional to the 
product of the modules. At time 𝑡 = 0 is: 
 
 𝛿σ! ≈ 𝛿𝐱! 𝛿𝐲!    (7.34) 

 
At time t: 
 
 𝐱 𝑡 = 𝛿𝐱!𝑒!!! ,   𝐲 𝑡 = 𝛿𝐲!𝑒!!!   (7.35) 
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then 
 𝛿σ 𝑡 ≈ 𝛿𝐱! 𝛿𝐲! 𝑒 !!!!! !   (7.36) 

 
Hence, because the constant of proportionality is always the same in time 
and space for linear systems: 
 
 𝛿σ 𝑡

𝛿σ!
= 𝑒 !!!!! ! 

  (7.37) 
 

 
Similarly, for 𝜆! + 𝜆! + 𝜆! the deformation of an infinitesimal volume can 
be considered. It is possible to go on with this procedure, until the 
consideration of hypervolumes whose dimension is not larger than the 
dimension of the attractor.  
The first Lyapunov exponent 𝜆!  represents the time average of the 
maximum growth rate of an infinitesimal perturbation of the state of the 
system on the attractor along its trajectory. The infinitesimal perturbation is 
an infinitesimal vector from a point of the attractor along its trajectory. The 
direction of this vector can change so that it is always directed in the 
direction of maximum growth. Hence, the first Lyapunov exponent 𝜆! 
represents the average growth rate of the modulus of the infinitesimal 
vector. The sum of the first two Lyapunov exponents 𝜆! + 𝜆! represents the 
average maximum growth rate of the area of the parallelogram surface 
defined by two infinitesimal vectors as time goes on.  
In general, the sum of the first 𝑘 Lyapunov exponents 𝜆! + 𝜆! +⋯+ 𝜆! 
represents the growth rate of the 𝑘-dimensional hyper-volume defined by 𝑘 
infinitesimal linearly independent vectors as time goes by. 
Hence, let us consider an 𝑚-dimensional sphere of radius 𝛿𝑟 around the 
state of the system. As time goes by the sphere changes shape and the 
measure of the hyper-volume occupied on the 𝑚-dimensional space. At each 
time of the temporal sequence, already considered, 𝑡! + 𝑡! +⋯+ 𝑡! the new 
hypervolume can be obtained by the Jacobian transform. At time 𝑡! the 
sphere becomes an ellipsoid with semi-axis coinciding with the principal 
directions. The semi-axis are stretched or shortened by 𝑒!!!, 𝑒!!! ,… , 𝑒!!!. If 
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the system is linear, as time goes by the ellipsoid deforms keeping its axis 
aligned with the same directions. The length of the axis increases if the 
eigenvalue is positive and decreases if the eigenvalue is negative. If all the 
eigenvalues are negative, the ellipsoid becomes a point. If the first eigenvalue 
is zero and the others negative, the length of the corresponding semi-axis is 
constant with time, while the other lengths decrease. In other words, the 
ellipsoid collapses onto a segment. If the first two eigenvalues are zero and 
the others negative, the lengths of the corresponding semi-axis are constant 
with time, while the others reduce with time more and more. In this case, 
the ellipsoid collapses onto a flat surface. The spatial dimensions of the set 
onto which the ellipsoid collapses increase with the number of vanishing 
eigenvalues. 
If the system is nonlinear, at each instant of time eigenvalues and 
eigenvectors change. The first Lyapunov exponent is the limit to which the 
average of the first eigenvalues of the procedure of the temporal sequence 
tends. A similar procedure determines the other Lyapunov exponents. A 
single transform from initial time 𝑡! to the generic time 𝑡 can be considered. 
The limit of the average operation determines the unique linear transform, 
whose eigenvalues are: 𝑒!!!, 𝑒!!! ,… , 𝑒!!! where𝜆!,… , 𝜆! are the Lyapunov 
exponents. 
 

 
Figure 7.4: 𝑚 -dimensional sphere in the m-dimensional space changing shape  

and measures of the hyper-volume as time increases. 
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7.4.  Geometric properties of attractors 
 
7.4.1   Lyapunov exponents and attractors  
The Lyapunov exponents characterize the attractor. If the Lyapunov 
exponents are all negative, the attractor has dimension 0 and is called fixed 
point. If the first Lyapunov exponent is zero and the others are negative, the 
attractor has dimension 1 and is called limit cycle (fig. 7.5). 	

 

 
Figure 7.5: Limit cycle.  

Source: https://it.wikipedia.org/wiki/Attrattore#/media/File:VanDerPolPhaseSpace.png 

 

If the first two Lyapunov exponents are zero and the others are negative, 
the attractor has dimension 2 and is called two-dimensional torus (fig. 7.6).		

 
Figure 7.6: 2D Torus.  

Source: https://it.wikipedia.org/wiki/Attrattore#/media/File:Torus.jpg 
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If the first 𝑘 Lyapunov exponents are zero and the others are negative, the 
attractor has dimension 𝑘 and is called 𝑘-dimensional torus. Note that the 
dimensions quoted are all integer numbers. Since the deterministic system of 
departure is dissipative, a set of initial conditions forming a starting hyper 
volume of dimensions 𝑚  in the basin of attraction is reduced by the 
transforms on time to a set of dimensions 𝑛 (𝑛 < 𝑚) of the attractor. A 
starting hyper volume on the attractor having the same dimensions 𝑛 of the 
attractor, is transformed in a new set which maintains the dimensions 𝑛 as 
time goes by. In this sense, the attractor is conservative, with the first 𝑛 
exponents of Lyapunov equal to zero. 
A sphere of infinitesimal radius of initial conditions, contained in the 
attractor, evolves over time deforming, lengthening, then shortening, and 
then lengthening again, without ever getting too far from the spherical shape 
so that all the Lyapunov exponents are vanishing. Thus, the influence of the 
initial conditions is weak. For example, if the motion is periodic, limit cycle, 
or almost periodic, torus, the points of the sphere can move away but then 
they have to get close again as shown in the following figure (fig. 7.7). 
 

 
Figure 7.7. Influence of initial conditions on the limit cycle. 

 
7.4.2   Strange attractors  
It may happen that there are positive Lyapunov exponents. In this case a 
sphere is deformed with time, becoming ever longer and thinner, similar to a 
spaghetto or a thread, but always remaining in the attractor. This means that 
the initial conditions have a strong influence. As the attractor is bounded, 
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the spaghetto curls on itself; the state of the system cannot achieve the same 
values achieved in the past, otherwise the motion would be periodic and the 
trajectory would be a single closed filament. Therefore, the spaghetto will 
continue indefinitely to curl on itself (folding) and the state of the system 
will sweep all the attractor. Each point of the attractor will, sooner or later, 
be visited by the state of the system. When the Lyapunov exponents have 
positive real part, the attractor is called strange attractor. Ruelle and Takens 
gave this definition. The strange attractor has not integer dimensions: it has 
a fractal structure. Due to the fractal structure of the attractor, invariant in 
time, two trajectories, initially very close and almost parallel, can diverge 
drastically and abruptly, though remaining within the attractor. 
The logic of the Lyapunov exponents leads to synthesizing the succession of 
the evolutionary process with an equivalent linear transformation that 
evolves exponentially and cannot highlight the complexity of the behaviour. 
We can imagine such a scenario considering a liquid flowing across a 
permeable medium formed of sand. The trajectories of two fluid particles 
very close to each other can diverge as soon as they meet a sand particle. 
The void represents the attractor and constrains the trajectories of the 
liquid: thus they can take tortuous and long-limbed forms that can be 
considered something between a volume and a surface or even a line. 
 
 
7.5.  Some final remarks 
 
7.5.1   Consideration on Laplace’s dictum  
The Laplace dictum (given the precise knowledge of the initial conditions, it should be 
possible to predict the future of the universe) has had a meaningful influence on 
how the deterministic systems (i.e. the systems whose evolution is governed 
by differential equations) have been considered. Indeed, it is assumed that 
there is no need to observe the solution for −∞ < 𝑡 < ∞ to see how the 
deterministic system behaves in the future or in the past. This assumption it 
is certainly true if the solution of the equations describing deterministic 
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system is stationary or periodic and can be considered valid even if the 
solution is quasi-periodic or if a white noise is superimposed on it. The 
predictability of the future behaviour of a variable whatever can be deduced 
by the autocorrelation coefficient of that variable: if the autocorrelation 
coefficient vanishes after a short interval of time, as it happens for turbulent 
variables, the predictability is only extended to that short interval of time.  
Limited predictability is also connected with the strong dependence on the 
initial conditions: the solutions of a deterministic system originating from 
very close initial conditions, may not remain close as time goes by as Lorenz 
has shown. 
Moreover, the irregular and disordered behaviour in the evolution of a 
dependent variable is due to variables not considered or neglected in 
formulating the laws that govern the process. Deterministic systems are 
often simplified schematizations of the physical processes they are meant to 
represent, with an inevitable degree of approximation, whether large or 
small. Therefore, when the evolution deviates from a regular and orderly 
behaviour it is expected that this can be due to the variability of some 
parameter or independent variable that plays a role in the process but it has 
been neglected in the schematization and that therefore it is not under 
control. 
In conclusion, the future behaviour of a deterministic system can be exactly 
foreseen, if the initial conditions and all the variables and parameters are 
exactly known. The unpredictability comes from the approximated 
knowledge of the initial conditions and from the neglecting of variables and 
parameters. Even two initial conditions, which differ between them due to 
the round-off error, cause the completely different evolution of the 
corresponding originating solutions. 
 
7.5.2   Time horizon and predictability  
The behaviour of a deterministic system with positive Lyapunov exponents 
is unpredictable beyond a well defined time horizon. Suppose we want to 
predict, with tolerance  𝛿, the value assumed at time 𝑡 by a variable of the 
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state of the system whose initial value is measured. The measure is affected 
by an error 𝜀!; the error grows with time according to the exponential law: 
 
 𝜀 𝑡 = 𝜀!𝑒𝜆1𝑡   (7.38) 

 
Therefore, 𝜀 𝑡  will reach the value 𝛿 at the time 𝑡!: 
 
 𝛿 = 𝜀!𝑒𝜆1!!    (7.39) 

 
From which: 
 

𝑡! =
1
𝜆1
ln
𝛿
𝜀!

   (7.40) 
 

 
In order to increase 𝑡!, 𝜀! should be reduced, but the reduction should vary 
exponentially to be effective. Hence, the order of magnitude of the 
predictability time is therefore: 

 
𝜃 𝑡! =

1
𝜆1

   (7.41) 
 

 

7.5.3   SRB measure and Future Perspectives  
The attractor can be divided into hyper-volumes and the percentage of time 
that the state of the system spends in each hyper-volume can be measured. 
If the time percentages do not vary starting from different initial conditions 
then it is said that the attractor is endowed with an SRB measure, from the 
name of the researchers Sinai, Ruelle, Bowen, who proposed it. This 
measure essentially represents how the probability that the state of the 
system belong to that hyper-volume is distributed regardless of the initial 
conditions. This probabilistic vision represents a positive and constructive 
approach, almost an engineering point of view, which makes the strong 
dependency on initial conditions more treatable.  
A turbulent flow, consisting of many fluid particles, may be considered as a 
deterministic system, which evolves from the attraction basin to its attractor. 
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Thus the SRB measure may be regarded as the density of particles per unit 
of volume, which in turn determines the probability that a fluid particle is in 
one area rather than another. This point of view offers new perspectives and 
techniques to be used in investigation on turbulent flows. In particular, it 
seems possible to use low dimensions deterministic systems able to face 
successfully the investigation on turbulent flows. 
The Fourier decomposition of the velocity vector could be a possible way 
forward. 
At the end of this ride through the chaos a question arises: does the 
Reynolds approach fit in the light of the achievements obtained by the 
deterministic theory of chaos? Is the division of the velocity field into 
ensemble average and fluctuating velocity an obsolete approach today? 
Probably not. The ensemble average operation requires the repetition of the 
process for a number of times such as to reach, with sufficient 
approximation, the limit of the average value if it exists (ergodic process). 
The repetition of the process ideally presupposes initial conditions that are 
very close but not exactly identical otherwise the process would repeat itself 
identically with identical results, i.e. without fluctuations. In Reynolds' 
approach, initial conditions and their influence is therefore implicitly taken 
into consideration. 
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In this book the fundamentals of turbulent incompressible flows are 
illustrated, sta rting from considerations on hydrodynamic stability. The 
characteristics of turbulent flows, the Reynolds-average approach and the 
turbulent kinetic energy balance are then illustrated. Then most important 
turbulence models are introduced and described and finally hints on the 
application of deterministic chaos theory to the study of turbulence are 
presented. 
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