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STABILITY OF ENTROPIC RISK MEASURES

Jacopo Maria Ricci❊

ABSTRACT

The estimation error is a crucial issue which affects portfolio selection. The majority of
the studies concern the most famous risk measures such as variance, Mean Absolute
Deviation (MAD), and Conditional Value-at-Risk (CVaR). On the other hand, to date,
there seems to be no study concerning the stability of  entropic risk measures such as
EntropicValue-at-Risk (EVaR) and Relativistic Value-at-Risk (RLVaR).
Using both simulated and historical data, we found that, while EVaR and CVaR exhibit
a similar stability profile, RLVaR is much more sensitive to noise.

KEYWORDS: Portfolio Selection; Noise sensitivity; Estimation error; Entropy.

ABSTRACT

L’errore di stima è un tema cruciale che riguarda la selezione di portafoglio. La maggior
parte degli studi concerne le misure di rischio più famose, quali la varianza, il Mean
Absolute Deviation (MAD), e il Conditional Value-at-Risk (CVaR). D’altro canto, al mo-
mento, non sembrano esserci studi riguardanti la stabilità di misure di rischio entropiche
quali l’Entropic Value-at-Risk (EVaR) e il Relativistic Value-at-Risk (RLVaR).
Utilizzando dati sia simulati sia storici, abbiamo trovato che, mentre l’EVaR e il CVaR
manifestano un profilo di stabilità simile, il RLVaR è molto più sensibile al rumore.

PAROLE CHIAVE: Selezione di portafoglio; Sensibilità al rumore; Errore di stima; Entropia.

❊ Roma Tre University - Department of  Business Studies.
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1. Introduction
The problem of quantifying risk has always been a fundamental issue in economics
and finance. Indeed, it concerns several fields from risk management to asset
allocation. As for the latter, starting from the seminal papers by Markowitz
(1952, 1959), there have been many works dedicated to the problem of selecting a
portfolio by minimizing a risk measure. Usually, the considerations concerning
such risk measures only involve their mathemathical properties and the perfor-
mances of the models based on such measures. However, an often overlooked
issue regards the stability of the solution with respect to changes in input data.
Financial portfolios tend to be composed of many assets, while, on the other
hand, the time series of the prices (or of the returns) are limited. This means that
the problem of estimation error is not negligible. Several authors have investi-
gated the stability of the Mean-Variance (MV) model, i.e., Jorion (1985); Best
and Grauer (1991); Broadie (1993); Britten-Jones (1999); Chopra and Ziemba
(2013). To fix the issue of errors in the estimates of means and covariances of
the assets, various approaches have been proposed, including restrictions on the
weights (see Haugen (1997)), or the use of Bayesian shrinkage estimators instead
of sample estimators (see e.g., Jorion (1985)) Other risk measures have been used
in portfolio optimization since the work by Markowitz, such as MAD (Konno
and Yamazaki (1991)), or CVaR (Rockafellar et al (2000)). Concerning the former,
Simaan (1997) studied the estimation risk af the MAD portfolios compared to the
MV ones. Kaut et al (2007); Goldberg et al (2013); Caccioli et al (2018) analyzed
the estimation error of the CVaR model. Kondor et al (2007) carried out an
extensive empirical analysis concerning four famous minimum risk models, i.e.,
the models that minimize Variance, MAD, CVaR and MaxLoss. Finally, Cesarone
et al (2020) examined the sensitivity of several minimum risk, maximum risk-gain
ratio and risk diversification portfolios. In the recent years, entropy has progres-
sively gained more importance in finance, and, specifically, in portfolio selection.
Two important risk measures based on entropy have been developed, i.e., the
Entropic Value-at-Risk (Ahmadi-Javid (2012); Ahmadi-Javid and Fallah-Tafti
(2019)) and the Relativistic Value-at-risk (Cajas (2023)). In this work, we want
to study how these two new entropy-based risk measures are affected by noise,
compared to some classical risk measures. We focus on long-only portfolios, and
on minimum risk models, since the estimation of the expected return poses an
additional issue and further amplifies the estimation error (see e.g., Jorion (1985);
Best and Grauer (1991); Chopra and Ziemba (2013); DeMiguel et al (2009)). This
work is structured as follows. Section 2 is dedicated to the description of the

J.M. Ricci
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models analyzed. In Section 3, we provide the methods we use to perturb the
data. Then, in Section 4, we describe the stability measures used to evaluate the
stability, and the data sets. Then, we analyze the results. Finally, in Section 5, we
draw some conclusions.

2. Portfolio selection models
In this section, we describe the models for which we study the sensitivity w.r.t.
changes in input data. Let us first introduce some notation. Let pit denote the
price of asset i at time t, and rit =

pit−pi(t−1)

pi(t−1)
denote its linear return, with

i = 1, . . . , n and t = 1, . . . , T . Additionally, let x = {x1, . . . , xn} be the
vector of portfolio weights, so that Rt(x) =

∑n
i=1 ritxi denotes the return of the

portfolio at time t. Finally, µ = {µ1, . . . , µn} is the vector of the means of the
assets, and Σ is the covariance matrix, whose entries σij are the covariances of the
returns between asset i and asset j. Below, we report all the portfolio selections
models considered in this work. These are all minimization models whose general
formulation is the following:

min
x

Risk(x)

s.t.
n∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

Here we only describe the risk measures, however, to find the optimization
problems, we refer the reader to the references cited. The risk measure used
in this work are Variance, CVaR, EVaR and RLVaR. The portfolio variance is
expressed as:

σ2
P (x) =

n∑
i=1

n∑
j=1

σijxixj

The portfolio selection model that minimizes the variance is that by Markowitz
(1952). The CVaR, also called expected shortfall, is a downside risk measure which
became very popular in the recent years. Given a confidence level ε, the CV aRε

is defined as the expected value of the losses lP (x) in the worst 100ε% cases,
where lP (x) = −RP (x) = −

∑n
i=1 Rixi. Note that Ri is the random variable

which represents the return of the ith asset, with rit being its realization at time t.

4 Working Paper Series, 5
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Mathematically, the CV aRε is expressed as follows:

CVaRε(x) = inf
t∈R

{
t+

1

ε
E[lP (x)− t]+

}
, ε ∈ [0, 1].

The CVaR is minimized via the linear programming (LP) problem by Rockafellar
et al (2000). As in Kondor et al (2007), we set ε = 0.30 (for the following risk
measures, as well). The EVaR is a new risk measure proposed by Ahmadi-Javid
(2012); Ahmadi-Javid and Fallah-Tafti (2019), and it is defined as

EV aRε(x) := inf
z>0

{
1

z
ln

(
MlP (x)(z)

ε

)}
,

where MX(z) = E[ezX ] denotes the moment generating function of a random
variable X . The EVaR represents the smallest upper bound of VaR stemming
from the Chernoff inequality (see Chernoff (1952)). Given ε, the EVaR is an upper
bound both to the VaR, and to the CVaR. The minimization of the EVaR of the
portfolio was first considered by Ahmadi-Javid and Fallah-Tafti (2019), and it is
a convex program whose constraints and variables are independent of the length
of the series T . However, in our experiments, we consider the reformulation
by Cajas (2021), which is a convex programming problem efficiently solvable by
several softwares. The last measure considered is the RLVaR (Cajas (2023)), a
measure whose dual representation is the following:

RLV aRk
ε(x) = sup

Z∈Mφ,β

E[Z ′lP (x)],

where Mφ,β = {Z ≥ 0, E[Z] = 1, E[Z ln{k}(Z)] ≤ ln{k}(
1
εT
)}, ln{k}(x) =

xk−x−k

2k
is the k-logarithm function (see (Kaniadakis, 2001)) and k ∈ (0, 1) de-

notes the deformation parameter. Regarding k, we have that, for a given level ε,
limk→0RLV aRk

ε(x) ≈ EV aRε(x), and, limk→1RLV aRk
ε(x) ≈ ess sup(x).

In this work, we set k = 0.30. Additionally, for a fixed ε, the following inequali-
ties hold:

EV aRε(x) ≤ RLV aRk
ε(x) ≤ ess sup(x)

The optimization problem consisting in the minimization of RLVaR can be found
in Cajas (2023).

J.M. Ricci
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3. Methods for perturbating the inputs
Here we describe the procedure used to evaluate the stability of the portfolios x∗

around the true portfolio x(0). First, we find the “true” optimal portfolio for all the
models, for a given original returns matrix, which we assume to be true. Then, for
a fixed level n

T
, we perturb the original data by generating M = 50 new samples,

either with Monte Carlo or with bootstrap methods. The samples generated are
statistically equivalent to the original data. Therefore, letR = {R1, R2, . . . , Rn}
be the multivariate returns. Then, to perturb the returns we use the following
methods:

1. Monte Carlo method:

i standard normal market, i.e., R ∼ N(0, I), where I is the identity
matrix.

ii Normal market, with R ∼ N(µ,Σ), where µ and Σ are estimated
from the real-world datasets described in section 4.1. We use the
returns from july 2020 to may 2024 (τ = 1000 days) to compute
the sample mean vector and sample covariance matrix, µ and Σ,
respectively. Therefore, for a fixed n, we generate M samples with
dimensions τ × n, where τ changes according to the value of n

T

considered (see Section 4).

2. Resampling method (see e.g. Michaud and Michaud (2007)): for each data
set consisting in a τ × n returns matrix, we generate the new samples via
bootstrapping, i.e., redrawing the historical returns with replacement. As
for the Normal market instance, M τ × n samples are generated. Here
we consider two block bootstrap sizes (BBS), where BBS= {1, 3} with
replacement.

4. Empirical Analysis
4.1. Data sets
Here we list the data sets we used in this work. All the data sets consist in
daily returns computed from daily prices, adjusted for dividends and stock splits,
obtained from Thomson Reuters Datastream. The data sets are the following:
All the problems have been implemented in Matlab 23.2 on a workstation with
Intel(R) Xeon(R) CPU E5-2623 v4 (2.6 GHz, 64 Gb RAM) under MS Windows
10 Pro.

6 Working Paper Series, 5
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Table 1: List of the daily datasets analyzed.

Index Abbreviation Country # Assets From - To

Dow Jones Industrial Av-
erage

DJIA USA 27 March 2018–May 2024

Euro Stoxx 50 STX50 EU 47 March 2018–May 2024
FTSE 100 FTSE UK 78 March 2018–May 2024
NASDAQ-100 NDX USA 67 March 2018–May 2024

4.2. Stability measures
In order to test the stability of the “perturbed” optimal portfolio x∗ w.r.t. the
“true” optimal portfolio x(0), as in Cesarone et al (2020), we consider the three
following measures:

1. s2 = ||x(0) − x∗||2, i.e., the Euclidean norm of the difference between x∗

and x(0);

2. s1 =
∑n

i=1|x(0) − x∗|, i.e., the l1 norm of the difference between x∗ and
x(0);

3. sRMSE =
√

1
n

∑n
i=1(x

(0) − x∗)2, i.e., the root mean square error of the

difference between x∗ and x(0).

Below, we provide the results for both of the methods described in Section 3. For
reasons of space, and since the metrics analyzed provide similar outcomes, we only
report the results concerning s2. The results regarding the remaining measures can
be found in the supplemental file (upon request) StabilitySupplemental.xlsx
(see description in Readme.txt).

4.3. Monte Carlo method
4.3.1. Standard normal market
Here we consider the instance where the returns are distributed according to a
multivariate standard normal distribution, i.e., R ∼ N(0, I). Figures from 1(a)
to 1(d) show the boxplots of the distance s2 for n

T
= {0.05, 0.4, 0.95, 1.5}, while

Table 2 displays expected value (Mean) and interquantile range (IQR) of the same
measure for n

T
= {0.05, 0.4, 0.7, 0.95, 1.5}. In order to rank the results in the

tables, we assign different colors to the performances of the models analyzed.

J.M. Ricci
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(a) Boxplot for n
T = 0.05 (b) Boxplot for n

T = 0.4

(c) Boxplot for n
T = 0.95 (d) Boxplot for n

T = 1.5

Figure 1: Dispersion of the optimal portfolios around the true” portfolio in the standard
normal market

Specifically, for each column, colors range from deep-green (best) to deep-red
(worst). As it can be noticed, the boxplots of s2 move up and widen as the n

T

ratio increases, meaning that both Mean and IQR increase with this ratio. The
minimum Variance portfolio is the most stable among all. The EVaR model seems
to be the second best, with a few exceptions regarding especially the IQR for
higher n

T
values. RLVaR is nearly always the worst model in terms of stability.

However, as the n
T

ratio increases, CVaR tends to be less stable than RLVaR, and,
for n

T
= 1.5 it is the model with the worst performance in terms of stability.

8 Working Paper Series, 5
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n
T

0.05 0.4 0.7 0.95 1.5

Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR

MV 0.023 0.002 0.070 0.008 0.092 0.008 0.107 0.010 0.128 0.011

CVaR 0.041 0.004 0.103 0.011 0.132 0.013 0.147 0.014 0.178 0.020

EVaR 0.045 0.004 0.101 0.010 0.128 0.013 0.144 0.015 0.176 0.017

RLVaR 0.058 0.006 0.106 0.011 0.131 0.015 0.145 0.017 0.178 0.016

Table 2: Statistics of the distance of the optimal portfolios from the “true” optimal
portfolio for the standard normal market

4.3.2. Normal market
Here we discuss the results concerning the returns following a multivariate normal
distribution, i.e., R ∼ N(µ,Σ), where the mean µ and the covariance matrix Σ
are estimated from the real-world datasets. Here the MV model proves, again,
to be nearly always the least dispersed model, with the only exceptions being
for interquantile range of the Dow Jones and NASDAQ-100 data sets, for n

T
=

{0.7, 0.95, 1.5} (see Tables from 3 to 6). As also shown in Figures from 2(a) to
4(d), CVaR is usually more stable than EVaR for lower n

T
, while the opposite

tends to be true for higher values of the ratio. The RLVaR portfolio seems to
yield the least accurate solution, with a few exceptions concerning only IQR.

4.4. Resampling method
We provide here the results regarding the resampling method applied to the histor-
ical returns. Since the results for both BBS are very similar, we report here only the
results where we take BBS=3. The analysis concerning the case where BBS=1 can be
found in the supplemental file (upon request) StabilitySupplemental.xlsx
(see description in Readme.txt). As it is possible to notice in Figure from 5(a) to
7(d) and in Tables from 7 to 10, the MV model always attains the best performance
in terms of stability, while the RLVaR model is always the worst performing. For
this method, the differences in the performances of these two models are much
more pronounced. This is testified by the fact that the average of s2 of MV is
usually half than that of RLVaR, and, in some cases, it is even less than that. As

J.M. Ricci
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(a) Boxplot for n
T = 0.05 (b) Boxplot for n

T = 0.4

(c) Boxplot for n
T = 0.95 (d) Boxplot for n

T = 1.5

Figure 2: Monte Carlo method: dispersion of the optimal portfolios around the “true”
portfolio in the Dow Jones data set
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(a) Boxplot for n
T = 0.05 (b) Boxplot for n

T = 0.4

(c) Boxplot for n
T = 0.95 (d) Boxplot for n

T = 1.5

Figure 3: Monte Carlo method: dispersion of the optimal portfolios around the “true”
portfolio in the Euro Stoxx 50 data set

J.M. Ricci
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(a) Boxplot for n
T = 0.05 (b) Boxplot for n

T = 0.4

(c) Boxplot for n
T = 0.95 (d) Boxplot for n

T = 1.5

Figure 4: Monte Carlo method: dispersion of the optimal portfolios around the “true”
portfolio in the NASDAQ-100 data set
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n
T

0.05 0.4 0.7 0.95 1.5

Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR

MV 0.110 0.031 0.250 0.072 0.316 0.081 0.367 0.097 0.416 0.109

CVaR 0.168 0.041 0.344 0.093 0.405 0.101 0.458 0.131 0.505 0.104

EVaR 0.183 0.073 0.340 0.095 0.412 0.112 0.452 0.082 0.493 0.109

RLVaR 0.238 0.084 0.360 0.116 0.421 0.118 0.460 0.103 0.492 0.128

Table 3: Monte Carlo method: mean and IQR of the distance from the “true” optimal
portfolio for the Dow Jones dataset

n
T

0.05 0.4 0.7 0.95 1.5

Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR

MV 0.074 0.023 0.194 0.063 0.238 0.065 0.270 0.061 0.316 0.068

CVaR 0.124 0.036 0.282 0.075 0.333 0.094 0.358 0.092 0.416 0.118

EVaR 0.136 0.031 0.281 0.072 0.328 0.085 0.357 0.079 0.408 0.121

RLVaR 0.204 0.050 0.305 0.070 0.346 0.086 0.375 0.072 0.418 0.109

Table 4: Monte Carlo method: mean and IQR of the distance from the “true” optimal
portfolio for the Euro Stoxx 50 dataset

J.M. Ricci
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n
T

0.05 0.4 0.7 0.95 1.5

Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR

MV 0.063 0.016 0.176 0.043 0.203 0.046 0.232 0.047 0.273 0.053

CVaR 0.097 0.025 0.232 0.043 0.278 0.052 0.305 0.060 0.357 0.064

EVaR 0.118 0.029 0.243 0.055 0.279 0.048 0.311 0.056 0.356 0.061

RLVaR 0.199 0.042 0.281 0.057 0.306 0.059 0.333 0.067 0.368 0.063

Table 5: Monte Carlo method: mean and IQR of the distance from the “true” optimal
portfolio for the FTSE 100 dataset

n
T

0.05 0.4 0.7 0.95 1.5

Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR

MV 0.082 0.019 0.209 0.068 0.258 0.076 0.281 0.076 0.336 0.088

CVaR 0.127 0.033 0.288 0.081 0.338 0.082 0.368 0.071 0.413 0.079

EVaR 0.144 0.040 0.299 0.075 0.344 0.070 0.378 0.078 0.417 0.079

RLVaR 0.242 0.054 0.340 0.079 0.372 0.049 0.399 0.061 0.432 0.083

Table 6: Monte Carlo method: mean and IQR of the distance from the “true” optimal
portfolio for the NASDAQ-100 dataset
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(a) Boxplot for n
T = 0.05 (b) Boxplot for n

T = 0.4

(c) Boxplot for n
T = 0.95 (d) Boxplot for n

T = 1.5

Figure 5: Resampling method: dispersion of the optimal portfolios around the “true”
portfolio in the Dow Jones data set

for CVaR, it is nearly always the second best, with the exception of the Eurostoxx
50 dataset, where the EVaR portfolio is less disperse than the CVaR portfolio. It
is noteworthy that, for this method, unlike the Monte Carlo one, Mean and IQR
don’t seem to be influenced by the value of n

T
.

5. Conclusions
In this paper, we studied the sensitivity with respect to changes in input data of
several minimum risk models. We applied different methods i.e., Monte Carlo and
resampling, to long only portfolios, and we considered different stability measures.
Our finding are in line with those by Kondor et al (2007) and Cesarone et al (2020).
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(a) Boxplot for n
T = 0.05 (b) Boxplot for n

T = 0.4

(c) Boxplot for n
T = 0.95 (d) Boxplot for n

T = 1.5

Figure 6: Resampling method: dispersion of the optimal portfolios around the “true”
portfolio in the Euro Stoxx 50 data set
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(a) Boxplot for n
T = 0.05 (b) Boxplot for n

T = 0.4

(c) Boxplot for n
T = 0.95 (d) Boxplot for n

T = 1.5

Figure 7: Resampling method: dispersion of the optimal portfolios around the “true”
portfolio in the NASDAQ-100 data set
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n
T

0.05 0.4 0.7 0.95 1.5

Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR

MV 0.093 0.032 0.092 0.035 0.096 0.034 0.096 0.029 0.094 0.030

CVaR 0.144 0.048 0.135 0.049 0.140 0.040 0.137 0.045 0.142 0.053

EVaR 0.160 0.075 0.142 0.065 0.159 0.068 0.151 0.075 0.155 0.066

RLVaR 0.187 0.121 0.156 0.082 0.180 0.119 0.176 0.110 0.185 0.111

Table 7: Resampling method: mean and IQR of the distance from the “true” optimal
portfolio for the Dow Jones dataset, with BBS=3

n
T

0.05 0.4 0.7 0.95 1.5

Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR

MV 0.091 0.026 0.093 0.031 0.094 0.032 0.094 0.032 0.089 0.023

CVaR 0.145 0.040 0.148 0.042 0.146 0.040 0.150 0.038 0.139 0.048

EVaR 0.142 0.040 0.141 0.042 0.142 0.039 0.144 0.038 0.143 0.042

RLVaR 0.176 0.057 0.168 0.052 0.171 0.059 0.178 0.050 0.176 0.062

Table 8: Resampling method: mean and IQR of the distance from the “true” optimal
portfolio for the Euro Stoxx 50 dataset, with BBS=3
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n
T

0.05 0.4 0.7 0.95 1.5

Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR

MV 0.090 0.023 0.089 0.023 0.090 0.023 0.090 0.021 0.090 0.025

CVaR 0.148 0.048 0.146 0.041 0.149 0.042 0.149 0.046 0.149 0.050

EVaR 0.163 0.063 0.164 0.060 0.166 0.049 0.163 0.061 0.165 0.058

RLVaR 0.225 0.134 0.228 0.117 0.232 0.106 0.226 0.104 0.223 0.102

Table 9: Resampling method: mean and IQR of the distance from the “true” optimal
portfolio for the FTSE 100 dataset, with BBS=3

n
T

0.05 0.4 0.7 0.95 1.5

Mean IQR Mean IQR Mean IQR Mean IQR Mean IQR

MV 0.104 0.035 0.114 0.040 0.105 0.032 0.108 0.036 0.109 0.023

CVaR 0.155 0.049 0.157 0.049 0.157 0.043 0.159 0.048 0.156 0.048

EVaR 0.188 0.062 0.196 0.054 0.192 0.044 0.196 0.066 0.184 0.048

RLVaR 0.262 0.145 0.267 0.131 0.265 0.135 0.271 0.113 0.244 0.141

Table 10: Resampling method: mean and IQR of the distance from the “true” optimal
portfolio for the NASDAQ-100 dataset, with BBS=3
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In particular, asymmetric risk measures seem to be more sensitive to estimation
error than symmetric risk measures such as the variance. Our preliminaries
results, show that the entropic risk measures, especially the Relativistic Value-
at-Risk, are heavily influenced by noise. Concerning the Entropic Value-at-
Risk, its performances depend on the method used (Monte Carlo or resampling)
and on the presence of correlation structure. Indeed, in the standard normal
market, where all the assets are uncorrelated, such a model is less sensitive to
noise than the Conditional Value-at-Risk. Considering the Monte Carlo case
where the parameters are estimated from real-world data sets, the former model
tends to be slightly less disperse than the latter, especially for higher n

T
values.

However, when considering the results of the resampling method, the Entropic
Value-at-Risk is nearly always less stable than the Conditional Value-at-Risk.
Therefore, in this instance, the method used seems to affect the results. On the
other hand, the solution provided by the minimum Relativistic Value-at-Risk
model is consistently the most disperse, independently on the method used. For
what concerns future research, it might be directed to studying the sensitivity
of Entropic Value-at-Risk to the confidence level ε, and the sensitivity of the
Relativistic Value-at-Risk to ε and to the parameter k.
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The estimation error is a crucial issue which affects portfolio 
selection. The majority of the studies concern the most famous 
risk measures such as variance, Mean Absolute Deviation (MAD), 
and Conditional Value-at-Risk (CVaR). On the other hand, to date, 
there seems to be no study concerning the stability of entropic risk 
measures such as Entropic Value-at-Risk (EVaR) and Relativistic 
Value-at-Risk (RLVaR). Using both simulated and historical data, we 
found that, while EVaR and CVaR exhibit a similar stability profi le, 
RLVaR is much more sensitive to noise.
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