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A Risk-Gain-Sparsity Optimization Approach

Maria Alessandra Congedo, Alessio Di Paolo, Carlo Domenico Mottura,
Jacopo Maria Ricci ∗

Abstract
One of the fundamental principles of portfolio selection models is risk minimization
through investment diversification. However, the benefits of diversification are reduced
when there is a high correlation between assets. It is well-known that diversifying
through the use of larger portfolios is not the best way to achieve an improvement in
out-of-sample performance. Moreover, including a large number of positions in the
portfolio increases management and transaction costs. While classical portfolio selection
models focus on risk minimization and return maximization, the purpose of this work
is to include a third objective: the l1-Norm. This allows for the selection of sparse
portfolios, that is, with a limited number of assets, which are easier to manage and allow
for good risk-return results.
Our empirical analysis is based on a publicly available dataset often used in the literature.
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1. Introduction and literature review
The main problem in asset allocation is to select a portfolio with appropriate
features in terms of gain and risk. More in detail, the aim is to build a
portfolio that maximizes a measure of profit and minimizes a measure of risk.
In 1952, Harry Markowitz laid the foundation of Modern Portfolio Theory
introducing the mean-variance framework: by solving a quadratic optimization
problem, the investor can find the optimal portfolio allocation that minimizes
the portfolio expected risk, for a given level of expected return. A major
limitation of the mean-variance approach is that the optimized weights are
very sensitive to estimation error and the presence of multicollinearity in the
inputs. In particular, it is well known that estimating expected returns is
more challenging than just focusing on risk minimization and then looking
for portfolios with minimum risk, i.e. the so-called global minimum variance
portfolios (Jagannathan and Ma, 2003). In addition, one method of achieving
positive returns while keeping risk levels stable is portfolio diversification
(Markowitz, 1952; Sharpe, 1964). It is based on the principle that several
assets may perform differently under various market conditions. However,
promoting diversification also means investing in a large number of assets,
which implies, in practical terms, high transaction and portfolio management
costs. In general, the development of successful asset allocation strategies
requires the construction of portfolios that perform well out-of-sample, provide
diversification benefits, and are cheap to maintain and monitor. In this
perspective, an ideal portfolio has conservative asset weights, which are stable
in time while still promoting the right amount of diversification and being able
to control the total amount of shorting. Following this rationale, a natural
approach is to extend the Markowitz optimization framework by using a penalty
function on the weight vector, typically the norm, whose intensity is controlled
by a tuning parameter (λ). In this context, one of the most recent successful
approach using convex penalty function, that can control the total amount
of shorting, while avoiding to invest in the entire asset universe is the Least
Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996). In
the field of portfolio selection, the LASSO framework consists on adding
to the Markowitz formulation a penalty proportional to the l1-Norm on the
asset weight vector. DeMiguel et al. (2009a) provide a general framework for
determining portfolios with superior out-of-sample performance in the presence
of estimation error, based on solving the traditional minimum-variance problem
subject to the additional constraint that the norm of the portfolio-weight vector
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be smaller than a given threshold. Brodie et al. (2009) show that LASSO results
in constraining the gross exposures and it can be used to account for transaction
costs. In this perspective Brodie et al. (2009), DeMiguel et al. (2009b) also
consider a portfolio with an l2-Norm penalty on the weight vector, known
in statistical literature as RIDGE. Although, the RIDGE penalty stabilizes the
mean-variance optimization, as it controls for multicollinearity, the shape of
the penalty does not promote sparsity, leading to portfolios with an undesirably
large number of active positions. Despite its appealing properties, the LASSO
is ineffective in presence of no short-selling and budget constraints (i.e., xi ≥
0,

∑n
i=1 xi = 1), as the l1-Norm is equal to 1. To overcome these issues,

non-convex penalties, like the lq-Norm, the log and the SCAD penalty have
gained increased attention in the portfolio literature (Chen et al., 2013; Fastrich
et al., 2014; Xing et al., 2014). In this work we propose a novel portfolio selection
approach which aims to maximize, as performance measure, the (weighted)
geometric mean of the differences between its gain, risk and sparsity and those
of a suitable benchmark. In order to consider sparse portfolios, we rely on
the l1-Norm, and, to make it functional, we allow short sales, thus focusing on
long-short portfolios. In addition to stabilizing the optimization problem and
generalizing no-short-positions–constrained optimization, the l1 penalty allows
the limitation of transaction costs. For large investors, whose principal cost is a
fixed bid–ask spread, transaction costs are effectively proportional to the gross
market value of the selected portfolio, i.e., to the l1 penalty term (Brodie et al.,
2009). Even for small investors, "overhead" costs (volume-independent) cannot
be ignored, so sparse solutions are preferred (sparse portfolios or sparse changes
to portfolios). In other words, the goal of this work is to build a profitable and
stable portfolio that, by taking advantage of the l1-Norm, invests in a limited
number of assets.

2. Real world problems optimization
Optimization is a branch of applied mathematics that refers to the minimization
(or maximization) of a given objective function of one or more decision variables
that satisfy functional constraints. A typical optimization model addresses
the allocation of scarce resources among possible alternative uses in order
to maximize an objective function such as total profit. Decision variables,
the objective function, and constraints are three essential elements of any
optimization problem. Problem that lack constraints are called unconstrained
optimization problems, while others are often referred to as constrained optimization
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problems. Problems with no objective function are called feasibility problems. In
practice, it is rare that a unique objective is able to summarise the problem that
must be faced; generally multi-objective optimization is an efficient technique
to use in order to find a set of solutions to several objectives. These problems are
often addressed by reducing them to a single-objective optimization problem or
a sequence of such problems. If the decision variables in an optimization problem
are restricted to integers, or to a discrete set of possibilities, we have an integer
or discrete optimization problem. If there are no such restrictions on the variables,
the problem is a continuous optimization problem. Of course, some problems may
have a mixture of discrete and continuous variables.
A typical example in finance is the portfolio selection problem that aims to
find the optimal assets’ combination in order to satisfy two different goals,
the risk minimization and the return maximization. As we shall see in later
sections of this paper, by changing the risk measurement, due to the properties
of the analyzed functions, one can convert the portfolio selection problems, for
example from mean-variance quadratic programming to a linear programming,
which is simpler and easier for being solved.

2.1. Single-objective problems
For the sake of completeness, even if the focus of this work is on multi-objective
problems, we can formally define a single-objective problem as:

minimize f(x)

s.t. x ∈ C
(1)

where f is the objective function, C is the system of equalities or inequalities
constraints that identifies the so-called "feasible set", while x = (x1, x2, . . . , xn)
is the vector of decision variables. If C is empty, the problem is infeasible and it
does not admit any solution. If it is possible to find a sequence xk ∈ C such that
f(xk) → −∞ as k → +∞, then the problem is unbounded. If the problem
is neither infeasible nor unbounded, then it is often possible to find a solution
x∗ ∈ C that satisfies

f(x∗) ≤ f(x), ∀x ∈ C.

In most cases, the feasible set C is described explicitly using functional
constraints (equalities and inequalities). For example, C may be given as

C := {x : gi(x) = 0, i ∈ I and gi(x) ≥ 0, i ∈ E}
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where I and E are the index sets for equality and inequality constraints. Many
factors affect the potential efficiency of solving optimization problems. For
example, the number n of decision variables and the total number of constraints;
other factors are related to the properties of the functions f and gi that define
the problem. One of the most common and easy to solve optimization problems
is the linear programming (LP), that consists in optimizing a linear objective
function subject to linear equality and inequality constraints. A more general
optimization problem is the quadratic programming (QP) problem, where the
objective function is a quadratic function of the variables subject to linear
equality and inequality constraints. Problems with a linear objective function
and linear constraints are easier, as are problems with quadratic objective
functions and convex feasible sets. When at least one of the functions f
or gi (with i ∈ I, i ∈ E) is not linear, we are in the case of non-linear
programming (NLP). As extensively explained in Cesarone (2020), the main
differences between an LP and a NLP problems are:

• in NLP problems, one may find points of local minimum or maximum
that can not be global. In LP problems, if a point is a local minimum or
maximum, it is also global

• the feasible region of a NLP problem can be any shape, not necessarily
a polyhedron as in LP, and the optimal solution can be anywhere, not
necessarily on a vertex as in LP

• the algorithms used to solve NLP problems are generally less efficient
than those for LP problems. Furthermore, the solutions are not
always global, but they could be any stationary points, more precisely
Karush-Kuhn-Tucker (KKT) points.

2.2. Multi-objective problems
Multi-objective optimization addresses problems involving multiple conflicting
objectives. Its aim is to find the optimal solution while considering multiple
objective functions that must be simultaneously optimized. A multi-objective
optimization problem can be formulated as follows

minimize (f1(x), f2(x), . . . , fk(x))

s.t. x ∈ C
(2)
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where k ≥ 2 objective functions need to be minimized simultaneously and
the feasible set C is defined as in the single objective problem. If there is no
conflict between the objective functions, then a solution can be found where
every objective function attains its optimum. We assume that there does not
exist a single solution that is optimal with respect to every objective function.
This means that the objective functions are at least partly conflicting. Anyway,
some of the objective vectors can be extracted for examination. Such vectors are
those where none of the components can be improved without deterioration to
at least one of the other components.

Definition 1 (Pareto optimality) A decision vector x∗ ∈ C is Pareto optimal if there
does not exist another decision vector such that fi(x) ≤ fi(x

∗) for all i = 1, . . . , k
and fj(x) < fj(x

∗) for at least one index j.

There are usually a lot (infinite number) of Pareto optimal solutions that define
the Pareto optimal set, even called efficient frontier. It is possible to define the
efficient frontier (or Pareto optimal set) where all the feasible solutions that
cannot be improved w.r.t. both objectives (Pareto optimal points) lie on. The
efficient frontier can be a curve in case of a bi-objective problem, a surface
with three objective functions and an iper-surface when more. According to
the previous definition, it is important to consider the following

Definition 2 (Pareto Dominance) A vector x̂ is said to dominate x∗ (x̂ ≺ x∗) if:

• fi(x̂) ≤ fi(x
∗) ∀i ∈ [1, . . . , k]

• There is at least one i such that fi(x̂) < fi(x
∗)

When dealing with multi-objective optimization problems, convexity is a
requirement that functions and feasible sets may satisfy or not. We know that

Definition 3 (Multi-objective problem convexity) The multi-objective
optimization problem is convex if all the objective functions and the feasible region are
convex.

Definition 4 (Convex function) A function fi : C → R is convex if for all
x1, x2 ∈ C is valid that fi(βx1 + (1 − β)x2) ≤ βfi(x1) + (1 − β)fi(x2)
for all 0 ≤ β ≤ 1.
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Definition 5 (Convex set) A subset C of a given vector space R is convex if x1, x2 ∈
C and β ∈ [0, 1] it is always implied that βx1 + (1− β)x2 ∈ C

In other words, a feasible set is convex if for any two given points in the set, the
line segment connecting these two points lies entirely in the set. If the previous
two conditions are satisfied we are facing a convex multi-objective optimization
problem, that is an important characteristic for the optimality of solutions, as
follows from the following

Theorem 6 (Optimal solutions) Let the multi-objective optimization problem be
convex. Then every locally Pareto optimal solution is also globally Pareto optimal.

3. Portfolio selection models
Portfolio selection aims at computing the proportion of capital to allocate
among available assets on a given market for the purpose of maximizing the
future portfolio return. Resorting to optimization problems it is possible
to obtain a portfolio with appropriate features in terms of gain and risk.
The base for determining the solution of portfolio selection problems was
laid out by Harry Markowitz with his paper "Portfolio Selection" published
in 1952 in the Journal of Finance, signing the beginning of the Modern
Portfolio Theory. It is still widely used by both academics and practitioners
to support investment decisions. However, its success has inevitably drawn
many criticism and proposals of alternative or more refined models (King, 1993;
Konno and Yamazaki, 1991; Mitra et al., 2003; Rockafellar et al., 2000). The real
innovation introduced by Markowitz is the concept of diversification related to
the correlation existing between securities. Diversification between uncorrelated
asset returns can reduce the portfolio risk, but could not eliminate it. That’s why
Markowitz talks about a trade-off between risk and gain: if we invest in assets
not (perfectly) correlated each other, the sacrifice in terms of portfolio return
will be compensated by the reduction of the overall risk. Let us an investment
universe composed of n risky assets, with expected returns E(Rk) = µk and
covariances σk,j with k = 1, 2, . . . , n and j = 1, 2, . . . , n. From a mathematical
viewpoint, the mean-variance problem of Markowitz consists of a bi-objective
optimization problem, solvable by satisfying two conflicting goals: minimizing
variance and maximizing portfolio expected returns. We now indicate with
x = (x1, x2, . . . , xn) the vector of portfolio weights, that are the decision
variables of the problem, for which the full investment and no short-selling
constraints hold:

∑n
k=1 xk = 1 and xk ≥ 0 respectively. In order to solve
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the mean-variance problem of Markowitz under these conditions, it has been
proposed, using the ϵ-constraint method, to set a required level of portfolio
expected returnµp = η. In this way, the Mean-Variance model becomes a convex
quadratic programming problem numerically solvable with efficient algorithms:

minimize
n∑

k=1

n∑
j=1

xkxjσkj

s.t.
n∑

k=1

µkxk = η

n∑
k=1

xk = 1

xk ≥ 0 k = 1, . . . , n

(3)

In order to build the efficient frontier, the procedure has to be iterated by
varying µp between the expected return of the minimum variance portfolio
ηmin and that of the maximum expected return portfolio ηmax. In this way,
the resulting optimal portfolios define the efficient frontier (those lying on the
interval [ηmin, ηmax]).

3.1. From a bi-objective to a three-objective model
As already mentioned, after Markowitz’s work, other portfolio selection
approaches have been developed in order to overcome its main limitations and
to reach other objectives. In particular, starting from the portfolio selection
model proposed by Cesarone et al. (2019), in which the aim is to select an optimal
portfolio that is able to maximize the weighted geometric mean of the distances
between its risk and gain values and those of a given benchmark index, the
aim of this paper is to extend this approach including a third objective: the l1
norm. Adding the l1 penalty term to the objective function has several useful
consequences:

• it promotes sparsity, playing a key role in the task of formulating
investment portfolios when investors want to be able to limit the number
of positions they must create, monitor and liquidate;

• it stabilizes the problem, imposing a penalty on the size of the coefficients
of the portfolio vector x, it is possible to reduce the sensitivity of the
optimization to possible collinearity between assets;
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• it incorporates a proxy for the transaction costs that, in a liquid market,
can be modeled by a two-component structure: one that is a fixed
"overhead", independent of the size of the transaction, and a second
one, given by multiplying the transacted amount with the marketmaker’s
bid–ask spread applicable to the size of the transaction.

For large investors, the overhead portion can be neglected; in that context,
the total transaction cost paid is just

∑n
i=1 si|xi|, the sum of the products of

the absolute trading volumes |xi| and bid-ask spread (si) is the same for all
assets. For small investors, the overhead portion of the transaction costs is
nonnegligible; for a very small investor, this portion may even be the only one
worth considering. If the transaction costs are asset-independent, then the total
cost is simply proportional to the number of assets selected (i.e., corresponding
to nonzero weights). The key point is that holding a large number of assets
and frequently changing the portfolio composition (high turnover) could erode
profits. On the other hand, it is easy to understand how holding portfolios
with a limited number of assets can greatly reduce commissions and trading
costs. A sparse portfolio should also promote conservative asset weights (low
Turnover), still maintaining diversification benefits. So, the goal is to implement
the risk-gain-sparsity model in order to construct a small, profitable and stable
portfolio.

3.1.1. A risk-gain dominance maximization approach
The Max-Area approach (Cesarone et al., 2019) tries to bring together the
advantages of a typical risk-gain analysis with those of the enhanced index
tracking, following a no-preference strategy. This work is based on the idea to
outperform the reference index by maximizing the weighted geometric mean
between its risk and gain and those of the reference index.
Let us first introduce a generic portfolio selection problem expressed as a
bi-objective optimization problem:

maximize γp(x)

minimize ρp(x)

s.t. x ∈ C

(4)

where γp(x) is a continuous concave measure of gain and ρp(x) is any continuous
convex measure of risk. Let then C be the feasible region of the problem such
that C = [x ∈ Rn : x ≥ l, eTx = 1], considering e ∈ Rn as a vector of ones

M. A. Congedo, A. Di Paolo, C. D. Mottura, J. M. Ricci
A risk-gain-sparsity optimization approach

9



and l ∈ Rn as the vector of lower bounds. Accordingly, C is a nonempty, convex
and compact feasible set where it is possible to find all the portfolios satisfying
problem constraints. Let us now consider a reference index (ρrefp , γref

p ) ∈ R2

defined in the risk-gain plane. It can be selected, for instance, the Nadir point,
for which ρrefp is the risk of the portfolio with maximal gain and γref

p is the gain
of the minimum risk portfolio. Alternatively, any market index can be chosen
as a reference point. For any feasible portfolio x ∈ C such that γp(x) ≥ γref

p

and ρp(x) ≤ ρrefp , it can be reformulated that (ρrefp − ρp(x)) ≥ 0 and (γp(x)−
γref
p ) ≥ 0. The idea is to maximize the non-negative quantity that corresponds

to the weighted geometric mean of the distances between the portfolio risk and
gain and those of the reference index. In terms of risk-gain dominance, the model
becomes:

maximize (γp(x)− γref
p )(ρrefp − ρp(x))

s.t. γp(x) ≥ γref
p

ρp(x) ≤ ρrefp

x ∈ C

(5)

By focusing on the constraints of problem (5), it is worth noticing how the
choice of the reference index affects the feasible region of the overall problem.
Indeed, ρrefp and γref

p are the worst values in the risk-gain plane that a feasible
portfolio can assume. In other words, the objective function in (5) is the area
of a rectangle Rx with height γp(x) − γref

p ≥ 0 and base ρrefp − ρp(x) ≥ 0.
Therefore, the non-negative objective function will be expressed as A(x) =
(γp(x) − γref

p )(ρrefp − ρp(x)). The maximization of the area of the rectangle
Rx, as shown in Figure 1, results in a portfolio xA that dominates the majority
of portfolios dominating the benchmark. As a consequence, xA is the portfolio
dominating the most the reference index (ρrefP , γref

p ). Moving from the optimal
portfolio xA to another feasible portfolio x, can be observed an enhancement
in terms of one of two objectives while a worsening on the other. Specifically,
the improvement obtained in terms of an objective is always smaller than the
worsening achieved in terms of the other objective. In other terms, it can be
demonstrated that if a feasible portfolio x ∈ C records an improvement in gain
such that γp(x) − γref

p = α(γp(xA) − γref
p ) with α ≥ 1, as a consequence

the worsening in terms of risk is exactly α(ρrefp − ρp(x)) ≤ ρrefp − ρp(xA).
Alternatively, let us suppose that the feasible portfolio x is better in terms of
risk in a way that ρrefp − ρp(x) = β(ρrefp − ρp(xA)) with β ≥ 1, then the
worsening in gain will be β(γp(x) − γref

p ) ≤ γp(xA) − γref
p . Last, by recalling
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Figure 1: The portfolio entailed by the Max-area approach, using the nadir as reference,
is marked in black, while that obtained by the Sharpe ratio maximization in grey. The
Markowitz portfolios for 3 different target return levels are marked in white.

that A(xA) ≥ A(x) for every x ∈ C it is valid that:

α =
γp(x)− γref

p

γp(xA)− γref
p

≤
ρrefp − ρp(xA)

ρrefp − ρp(x)
=

1

β
.

Another distinctive feature of the model is its flexibility: by changing the
measures of risk and gain also the selected portfolios will change accordingly.

3.1.2. A risk-gain-sparsity optimization approach
From the birth of Modern Portfolio Theory, Markowitz observed that given
the high correlations in the stock market, increasing the size of a portfolio
may reduce the benefits of diversification. In fact, when dealing with highly
correlated assets, only a limited reduction in portfolio riskiness can be obtained
by increasing the number of assets included (Markowitz, 1959). On the other
hand, benefits of diversification are more prominent when increasing the
amount of securities that are uncorrelated each other. As already mentioned,
holding a portfolio with a large number of assets may be expensive from
the perspective of monitoring and transaction costs and, overall, these costs
may result greater than the benefits of diversification. On the contrary,
holding portfolios that include a limited number of assets reduces the respective
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management expenses and commissions. These relationships can be seen as
a trade off between the resulting reduction of risk due to the diversification
and the increase of transaction costs (reduction of return) and vice-versa.
Another important advantage of small portfolios seems to be that of reducing
the estimation errors for variances and covariances thus leading to better
out-of-sample performance (Cesarone et al., 2014). At the light of the above
considerations, ideal portfolios are those characterized by sparsity, i.e. the capital
is invested in a few assets. A sparse portfolio should also promote a low Turnover
still maintaining diversification benefits. To achieve this goal we can rely on the
portfolio norm. A Norm on a real vector space X is a function ∥.∥ : X → R that
associates to a n-dimension vector a positive length. Considering a vector space
X, the norm ∥x∥ is such that the following conditions are satisfied:

1. ∥x∥ ≥ 0 ∀x ∈ X

2. ∥x∥ = 0 if and only if x = 0

3. for any scalar quantity λ it is true that ∥λx∥ = ∥λ∥∥x∥

4. ∀x, y ∈ X ∥x+ y∥ = ∥x∥+ ∥y∥

The most common norms are know under the name of p-norms or lp norms
family. Considering a vector x, the p-norm ∥x∥p can be defined as:

∥x∥p = (xp
1 + xp

2 + xp
3 + ...+ xp

n)
1
p .

It can be also re-written in simplified terms as:

∥x∥p = (
n∑

i=1

xp
i )

1
p (6)

with p ∈ [1,+∞].
When p = 0 the third of the above introduced axioms does not stand anymore:
we are dealing with a pseudo-norm l0. It is not a real norm, but it can be useful
since it counts the number of non-zero elements in a vector and therefore be
functional when dealing with a vector of portfolio weights.
The 1-Norm, also called "Manhattan Distance", simply measures the sum of the
absolute values of the vector components. When p = 1, (6) becomes the sum of
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the magnitudes of the vector in the space.

∥x∥1 =
n∑

i=1

|xi|

The most common is the Euclidean Norm or Norm-2 since it implies that p = 2.
It computes the shortest distance between two points resulting in a non-negative
value.

∥x∥2 =

√√√√ n∑
i=1

x2
i

Finally, the last to be mentioned is the infinity norm that measures the maximum
absolute value in the given vector.

∥x∥∞ = max |xi|

Following this reasoning, a third objective can be introduced to select the
portfolio with a limited number of assets. To make it possible, the l0
pseudo-norm as additional objective to be minimized is considered. The model
thus becomes:

maximize γp(x)

minimize ρp(x)

minimize ∥x∥0
s.t. x ∈ C

However, the l0 pseudo-norm has a characteristic that makes the optimization
problem computationally hard to be solved: it is non convex. One way to address
a non-convex optimization is to resolve a similar convex optimization problem.
It is geometrically demonstrated that l1 is the best convex approximation to l0
and that, under some specific conditions, it provides the same solution as the
original problem with l0. Therefore a theoretical model that is able to promote
a sparse portfolio can be expressed this way:

maximize γp(x)

minimize ρp(x)

minimize ∥x∥1
s.t. x ∈ C
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In order to apply the Max-area approach, all the components must be
continuously differentiable, but the l1 is not. In fact, the absolute value function
f(x) = |x| is not differentiable at the origin, where a corner point can be
identified. The module can be imagined as as the sum of two components in
order to overcome the non-differentiability of the function. Let us split the
function in two elements:

- the first x1+ described by the function

max[0, x1] =

{
x1 if x1 ≥ 0

0 otherwise

- the second x1− described by the function

max[0, x1] =

{
0 if x1 ≥ 0

−x1 otherwise

Therefore, we can write:

|x1| = max[0, x1] + max[0,−x1]

with x1 = max[0, x1]−max[0,−x1] and max[0, x1] ≥ 0, max[0,−x1] ≥ 0.
At the light of the above considerations, the three objectives optimization
problem

minimize
n∑

k=1

n∑
j=1

xkxjσkj

maximize
n∑

k=1

µkxk

minimize
n∑

k=1

|xk|

s.t.
n∑

k=1

xk = 1

xk ≥ lk k = 1, . . . , n

(7)
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can be reshaped as the equivalent version:

minimize
n∑

k=1

n∑
j=1

(uk − vk)(uj − vj)σkj

maximize
n∑

k=1

µk(uk − vk)

minimize
n∑

k=1

(uk + vk)

s.t.
n∑

k=1

(uk − vk) = 1

uk − vk ≥ lk

uk ≥ 0

vk ≥ 0 k = 1, . . . , n

(8)

Thus, the original not differentiable model has been turned into a continuously
differentiable one, so that the Max-Area approach is now applicable.

maximize (
n∑

k=1

µk(uk − vk)− γref
p )(ρrefp −

n∑
k=1

n∑
j=1

(uk − vk)(uj − vj)σkj)

(δrefP −
n∑

k=1

(uk + vk))

s.t.
n∑

k=1

µk(uk − vk) ≥ γref
p

n∑
k=1

n∑
j=1

(uk − vk)(uj − vj)σkj ≤ ρrefp

n∑
k=1

(uk + vk) ≤ δrefP

n∑
k=1

(uk − vk) = 1

uk − vk ≥ lk

uk ≥ 0

vk ≥ 0 k = 1, . . . , n

(9)

For the sake of completeness, in the risk-gain-sparsity space any feasible portfolio
no longer identifies a rectangle (as in the risk-gain space), but an hypercube: what
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it is going to be maximized is now a volume. The optimization of a nonlinear
non convex single-objective problem is then implied: implementing the novel
model in MATLAB, the objective of the paper results in finding the portfolio
that mostly dominates the selected "reference index".

3.2. The elements of the model
As in the Max-Area approach, the model is implemented considering standard
deviation and expected returns as measures of risk and profit, respectively.
Furthermore the novel approach is enhanced by a measure of sparsity: the
l1-norm. The aim is to find the optimal values of expected return, volatility
and l1-norm as far as possible from the reference values. The choice of the
reference index has played a fundamental role in the entire empirical analysis
of this work. Before getting into the details of how the reference point has
been computationally achieved, it is necessary to point out that the following
analysis, to make the 1-norm functional, does not consider long-only portfolios,
but it also involves portfolios with short positions (i.e. long-short portfolios).
In practice, it has been possible by setting a negative vector of lower bounds l
to the optimization problems solved: xk ≥ lk . For practical implementation,
it has been necessary to derive the reference point (ρrefP , γref

P , δrefP ) in the
three-dimensional objective space.
Risk-return reference
Following a similar approach of Cesarone et al. (2019), it has been considered
γref
p as the gain of the minimum risk portfolio and ρrefp as the risk of the portfolio

obtained by going short on all the assets xi = l, ∀i = 1, . . . , n− 1 and long for
an amount equal to xn = |l|(n− 1) + 1 on the asset with the highest expected
return.
For clarity, let us consider an example with 2 assets A and B, lower bound equal
to l = −0.1 and B with highest expected return. The reference risk in this case
is the portfolio obtained by investing xA = −0.1 and xB = 1.1. The same
rationale can be extended to the case of n assets.
l1-Norm reference
The previous point is combined with the worst possible value for the l1-norm
δrefP , achieved through a closed-form solution. Let us first remind that the
l1-norm is simply given by the sum of the absolute values of the n vector elements
as:

∥x∥1 =
n∑

i=1

|xi| = |x1|+ |x2|+ ...+ |xn| (10)
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The development of a closed-form able to maximize the l1-Norm of a vector
starts from the basic case of two assets. As a starting point, the concept of level
line has to be introduced: the level line of a function of two variables is defined as
the set of points in the plane whose coordinates satisfy the equation f(x, y) = c,
where c is a real constant. Let us consider this function as the l1-Norm of a vector
with two elements:

f(x, y) = ∥x∥1 = |x1|+ |x2| = c

For the purpose of this work, it can be supposed a portfolio selection problem
with two assets whose weights must respect the budget constraint. By imposing
a negative lower bound to their values, it can be obtained a greater than one
level of l1-Norm, which is the minimum it can get at the light of the required
budget constraint. Furthermore, setting a negative lower bound l leverages the
advantages of implying short sales: in the trivial case of two assets if one assumes
a negative value x1 = l with l < 0, the other has to take a greater than one
positive value to respect the budget constraint

x2 = 1 + |l|

since x1+x2 = 1. In terms of l1-Norm, this implies that the sum of the absolute
values is maximal when one of the two assets is bounded to its minimal feasible
value, that in this case is l < 0.

This reasoning can be extended to the case of n assets: leaving at the lower
bound level n − 1 assets (such that xi = l,∀i = 1, . . . , n − 1), xn will get a
remarkable positive value so as to maximize the l1-Norm. It is thus possible to
develop a closed-form starting from the budget constraint. Since the n−1 assets
are bounded to l, we can write:

xn = 1 + (n− 1)|l|

since l1 + l2 + · · ·+ ln−1 + xn = 1.
Following the 1-norm formulation:

∥x∥1 = |l|+ |l|+ ...+ |l|+ 1 + (n− 1)| l |

In other terms, the maximum 1-norm is:

∥x∥1 = 1 + 2(n− 1)| l |.
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4. Empirical Analysis

In this Section, we provide an extensive empirical analysis based on a real world
dataset, where we compare three different strategies:

• Global Minimum Variance (GMV) portfolio, obtained by including
short-selling to the classical minimum variance optimization model

minimize
n∑

k=1

n∑
j=1

xkxjσkj

s.t.
n∑

k=1

xk = 1

xk ≥ l k = 1, . . . , n

(11)

• Max-Area (Max-A) portfolio, applying the model developed in Cesarone
et al. (2019) including short-selling

maximize (
n∑

k=1

µkxk − γref
p )(ρrefp −

√√√√ n∑
k=1

n∑
j=1

xkxjσk,j)

s.t.
n∑

k=1

µkxk ≥ γref
p√√√√ n∑

k=1

n∑
j=1

xkxjσk,j ≤ ρrefp

n∑
k=1

xk = 1

xk ≥ l k = 1, . . . , n

(12)

• Max-Volume (Max-V) portfolio, based on the risk-gain-sparsity model
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proposed

maximize (
n∑

k=1

µk(uk − vk)− γref
p )(ρrefp −

√√√√ n∑
k=1

n∑
j=1

(uk − vk)(uj − vj)σkj)

(δrefP −
n∑

k=1

(uk + vk))

s.t.
n∑

k=1

µk(uk − vk) ≥ γref
p√√√√ n∑

k=1

n∑
j=1

(uk − vk)(uj − vj)σkj ≤ ρrefp

n∑
k=1

(uk + vk) ≤ δrefP

n∑
k=1

(uk − vk) = 1

uk − vk ≥ lk

uk, vk ≥ 0 k = 1, . . . , n
(13)

4.1. Datasets and experimental setup
The experiments have been conducted on a real-world dataset downloaded from
Refinitiv Eikon. The data consists of daily linear returns, from October 2006 to
December 2020 for a total of T = 3582 observations, of assets belonging to the
DowJones, that is a price-weighted stock index representing the performance of
the top 30 stocks on the New York Stock Exchange (NYSE).
For the out-of-sample performance analysis we adopt a Rolling Time Window
(RTW) scheme of evaluation, namely we allow for the possibility of rebalancing
the portfolio composition during the holding period at fixed intervals. Here, we
choose one financial month (H = 20 days) both as a rebalancing interval and
as a holding period and two years (L = 500 days) as in-sample window. For
each portfolio strategy analyzed, this procedure generates T − L out-of-sample
portfolio returns, on which several performance measures are computed. In
addition, to robustly test the performance of models, the experiments are
conducted for several lower bound levels l = −10%,−50%,−100%, allowing
short-selling in different proportions. All the procedures have been implemented
in MATLAB R2022B and have been executed on a PC with an Intel(R) Xeon(R)
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CPU E5-2623 v4 @ 2.6 GHz processor and 64,00 GB of RAM. Both the
objective functions of problems (12) and (13) are maximized using fmincon
with interior-point algorithm, optimality-tolerance of 1e − 10 and
max-iterations of 1e4.

4.2. Computational results
We examine here the computational results obtained by implementing the three
models, for different levels of lower bounds (l) on the DowJones dataset. As
we can observe in Tables 1, 2, 3, the rank of performance results is shown
through different colours. More precisely, for each row, the colours range from
deep green to deep red, where the former represents the best performance
and the latter indicates the worst performance. For all lower bound levels,
both in terms of sample mean and sample volatility, the Max-V model displays
intermediate results between GMV and Max-A. Interestingly, the proposed
model has the best Sharpe and Sortino ratios, thus showing the best gain per
unit of risk. Furthermore, the Max-V model has, in all cases, the best Rachev
ratio, demonstrating the best potential for extreme positive returns versus the
risk of extreme losses (negative returns). The GMV model displays the lowest
values of Ulcer index and Maximum Drawdown and it remains stable for all
lower bound levels; in these terms, the Max-V approach results are always better
than the Max-A, showing strongly increasing values as short-selling increases.
The portfolio Turnover, that is a proxy of the amount of trading required to
execute the strategies, reveals that the GMV model is the most stable. It is clear
that, both the Max-A and the Max-V approaches show high Turnover values,
with the difference that, in the second case, there are far fewer assets included
in the portfolio, greatly reducing monitoring and transaction costs. The latter
is the key point for which, in this work, we decided to extend the Max-Area
approach (Cesarone et al., 2019): including the l1-Norm it is possible to build
sparse portfolios with few active positions while maintaining good results from
a risk-return perspective.
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Table 1: Out-of-sample performance results of DowJones with l = −10%

l = −10% GMV Max-A Max-V

µout 0.00026 0.00103 0.00099

σout 0.00970 0.02695 0.02002

Sharpe 0.02720 0.03826 0.04942

Sortino 0.03823 0.05525 0.07334

Ulcer 0.07686 0.20427 0.12434

MaxDD -0.33163 -0.47479 -0.35403

Rachev 5% 0.93200 1.00480 1.07459

Turnover 0.27173 1.59414 0.98741

Norm 1.96503 5.06765 2.01086

N assets 24 28 10

Long 15 7 4

Short 9 21 6

Table 2: Out-of-sample performance results of DowJones with l = −50%

l = −50% GMV Max-A Max-V

µout 0.00026 0.00267 0.00216

σout 0.00974 0.09828 0.06524

Sharpe 0.02695 0.02712 0.03306

Sortino 0.03784 0.03855 0.04840

Ulcer 0.07680 0.98401 0.73558

MaxDD -0.33679 -0.99978 -0.93200

Rachev 5% 0.93338 0.97914 1.04525

Turnover 0.28508 6.08814 3.61903

Norm 1.98882 21.31086 9.09925

N assets 24 28 12

Long 15 7 3

Short 9 21 9
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Table 3: Out-of-sample performance results of DowJones with l = −100%

l = −100% GMV Max-A Max-V

µout 0.00026 0.00471 0.00371

σout 0.00974 0.18914 0.12436

Sharpe 0.02695 0.02489 0.02984

Sortino 0.03783 0.03526 0.04350

Ulcer 0.07681 1.00299 0.99230

MaxDD -0.33681 -1.53042 -1.00000

Rachev 5% 0.93338 0.97449 1.03716

Turnover 0.28510 11.71835 6.98820

Norm 1.98887 41.66965 18.04714

N assets 24 28 13

Long 15 7 3

Short 9 21 9

5. Conclusions

In this paper we extend and further improve the approach proposed in (Cesarone
et al., 2019) through a tri-objective model. The effect of including the l1-Norm
is that of obtaining sparse portfolios, i.e. with a small number of assets, but, to
make it functional it is necessary to consider long-short portfolios. Markowitz
observed that a large-sized portfolio can reduce the benefits of diversification
if high correlations exist in the stock market. In addition, it was soon realized
that risk-return optimization can be very sensitive to changes in the inputs, due
to errors in the estimates of the means and covariances of the assets returns,
with the means being more crucial than the covariances (Best and Grauer, 1991;
Chopra and Ziemba, 2013). Several methods are proposed in the literature to
decrease the influence of estimation errors on portfolio selection. These include
approaches developed in the area of statistics, such as shrinkage method (Ledoit
and Wolf, 2003), Bayesian approaches (Craig MacKinlay and Pástor, 2000; Pástor
and Stambaugh, 2000) and robust optimization procedures (Cornuejols and
Tütüncü, 2006; Goldfarb and Iyengar, 2003). According to this evidences,
in this work we investigate the possible benefits of portfolios composed of a
limited number of assets, i.e. "small portfolios". Our empirical results show that,
including the l1-Norm improves the out-of-sample portfolio performance in
terms of risk-return balance and, selecting sparse portfolios, allows to reduce
monitoring and transaction costs, that in most cases could erode the investors’
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profits. Furthermore, short-selling is an attractive but risky choice; however, it
can be beneficial and profitable if positions are taken based on proper long-short
allocation. These results are in line with the tendency described in DeMiguel
et al. (2009a), where an improved out-of-sample performance is often observed
for the norm-constrained minimum-variance portfolios. Possible future research
could be oriented to investigate the validity of the proposed approach in larger
markets and extend it to the enhanced index tracking field by changing the
reference point.
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One of the fundamental principles of portfolio selection models is risk 
minimization through investment diversification. However, the benefits of 
diversification are reduced when there is a high correlation between assets. 
It is well-known that diversifying through the use of larger portfolios is not 
the best way to achieve an improvement in out-of-sample performance. 
Moreover, including a large number of positions in the portfolio increases 
management and transaction costs. While classical portfolio selection 
models focus on risk minimization and return maximization, the purpose 
of this work is to include a third objective: the l1-Norm. This allows for the 
selection of sparse portfolios, that is, with a limited number of assets, which 
are easier to manage and allow for good risk-return results.
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