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The powerful methods of modern mathematics since the seventeenth 
century were first tested in the field of mechanics. What became of 
classical methods after the advent of twentieth-century theoretical 
physics? This volume examines Russian scholar Andrej N. Kolmogorov’s 
contribution to classical mechanics, offering a reconstruction of the 
origins of the research program that he made public, just over a year after 
Stalin’s death, in a lecture at the Amsterdam International Conference 
of Mathematicians in 1954. The author adopts a cultural history of 
mathematics perspective to offer a historical narrative that weaves 
together mathematical open problems, the Soviet intellectual context, the 
complex international network of scholars involved, and Kolmogorov’s 
intellectual biography. The book is aimed at historians of mathematics 
and science, and scholars interested in the evolution of scientific thought 
in the twentieth century.

Ph.D. in Mathematics and a tenured teacher of mathematics and physics 
in secondary school, is a research fellow and lecturer at the Department of 
Education, University of Roma Tre. Her research fields are mathematics in 
the contemporary age, with special emphasis on the history of mechanics 
and the history of mathematics education.
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A new branch of  which we have desperate need. I call it paramathematics. For
mathematicians – of  the ‘theorem proving variety’ – only speak about mathematics
from within it, with its own criteria of  rigor – considering an outside view trivial or
irrelevant. 
Yet it almost seems to be a direct corollary of  Kurt Go�del’s great theorems, that
mathematics does not possess the language within itself  to reflect on its own nature
– and how could it, when it cannot even (at the level of  one theory) solve the problem
of  its own consistency.
[Alas, mathematicians live and work in a terra that is incognita to the population at large,
i.e. to everybody else [the hoi polloi, the un-mathematical multitudes]].
This is the meaning of  paramathematics; this is the need for it: for a field, literally, on
the side of  mathematics, as metamathematics is beyond it. This will of  necessity be
cross- and inter-disciplinary, drawing on mathematics itself  but also on logic,
philosophy, epistemology, the history of  ideas, cognitive psychology, sociology,
anthropology, education theory. And, of  course, mathematics education. 
Of  paramathematics we require that it provide mathematics as we know it with
context and thus meaning, extra-mathematical meaning and thus criteria, distance,
clarity, bird’s eye view, integration with thought, history and society. 

ApOSTOLOS DIOxIADIS

Opening address to the Third Mediterranean Conference of  Mathematics Education Athens, January 3, 2003

Un nuovo ramo di cui abbiamo un disperato bisogno. Io lo chiamo paramatematica.
perché i matematici – quelli per intenderci che “dimostrano teoremi” – parlano della
matematica solo dal suo interno, con i propri criteri di rigore – e considerano una vi-
sione dall’esterno banale o irrilevante.
Eppure sembra quasi essere un diretto corollario dei grandi teoremi di Kurt Gödel,
che la matematica non possiede in sé il linguaggio per riflettere sulla propria natura
– e come potrebbe, se non riesce nemmeno (a livello di una teoria) venire a capo del
problema della propria coerenza.
[Ahimè, i matematici vivono e lavorano in una terra che è incognita per le persone in
generale, cioè per tutti gli altri [gli hoi polloi, le moltitudini non matematiche]].
Questo è il significato della paramatematica; questa è la necessità di essa: di un campo,
letteralmente, dalla parte della matematica, così come la metamatematica è al di là di
essa. Un tale campo sarà necessariamente trasversale e interdisciplinare, attingendo
alla matematica stessa ma anche alla logica, alla filosofia, all’epistemologia, alla storia
delle idee, alla psicologia cognitiva, alla sociologia, all’antropologia, alla teoria del-
l’educazione. E, naturalmente, alla didattica della matematica. 
Alla paramatematica chiediamo che fornisca alla matematica come la conosciamo
contesto e quindi significato, significato extramatematico e quindi criteri, distanza,
chiarezza, visione a volo d’uccello, integrazione con il pensiero, la storia e la società.

ApOSTOLOS DIOxIADIS

Conferenza di apertura della Terza Conferenza Mediterranea di Didattica della Matematica, Atene, 3 gennaio 2003 
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Abstract

The Russian mathematician Andrej Nikolaevich Kolmogorov (1903-1987)
delivered a lecture at the International Congress of  Mathematicians in Ams-
terdam on September 9, 1954, titled The general theory of  dynamical systems and
classical mechanics. The lecture’s text, published in Russian two years later in the
Congress Proceedings, presented an innovative research program exploring in-
terrelations among various areas of  mathematics. Kolmogorov aimed to de-
velop new approaches to unresolved problems in classical mechanics, drawing
on his deep knowledge of  19th-century mathematics – particularly the tradi-
tion of  mathematical physics.

To his audience, classical mechanics may have seemed outdated com-
pared to the then-dominant theories of  relativity and quantum mechanics.
however, Kolmogorov firmly believed that classical mechanics was far from
obsolete. he argued that hamiltonian dynamical systems deserved renewed
attention, especially from young scholars who could build upon seemingly
outdated or neglected theories.

During the first half  of  the 20th century, the applications of  mathe-
matics expanded into a wide range of  scientific and technological domains,
extending beyond the inanimate to the humanities and life sciences. The dy-
namical systems approach – what Stephen Smale later called the modern math-
ematics of  time – played a significant role in this development. paradoxically,
mechanics as studied through differential equations – a field central to mod-
ern science since the 17th century, and particularly to celestial mechanics –
had long reached a theoretical impasse.

Kolmogorov’s lecture was preceded by two articles he published be-
tween late 1953 (shortly after Stalin’s death) and the weeks leading up to the
congress. The second of  these introduced two theorems that would become
cornerstones of  his research program. These theorems, and the program it-
self, laid the groundwork for what would become one of  the major develop-
ments in 20th-century mathematics: KAM theory, named after Kolmogorov,
his student Vladimir Igorevich Arnol’d, and the German mathematician Jür-
gen Moser.

This book explores the origins of  Kolmogorov’s contribution, from
his early fascination with science – particularly astronomy – to his emergence
as a central figure in Soviet mathematics and intellectual life. Its aim is to shed



light on the genesis of  a theory largely overlooked in the historiography of
mathematics, and to examine, through a focused case study, the broader con-
ditions of  mathematical research in the 20th century, the evolution of  classical
mechanics, and the decisions and actions of  an individual scholar shaped by
a complex personal biography and the historical-political context of  his time.



Contents

Introduction
Chronology

1. The mathematical landscape

1.1     Between past and future: celestial mechanics at the turn of  the 
          19th/20th centuries

1.1.1   “properties holding for almost all the initial states of  the 
                         system”: henri poincaré’s (1854-1912) recurrence theorem 
                         (1890) towards a metrical approach to dynamical systems

1.1.2  Ferrying classical mechanics to the 20th century: Edmund 
          Whittaker’s (1873-1956) A treatise on the analytical dynamics of
          particles and rigid bodies (1904)
1.1.3  The Scandinavian research tradition: Die Mechanik des 

                         Himmels (1902-07) by Carl Ludvig Charlier (1862-1934)
1.1.4  Classical and modern mechanics: Jean-François Chazy 
          (1882-1955) and the capture in the three body problem 70
1.1.5  Otto Yulyevich Schmidt (1891-1956): A Soviet 1947 
          contribution

1.2     Metrical and spectral studies: The modern ergodic theory and the 
               theory of  dynamical systems in the 1930s

1.2.1  General dynamical systems: George David Birkhoff ’s 
                         (1884-1944) work on the wake of  poincaré in the years 
                         1912-1927 

1.2.2  Bernard O. Koopman’s (1900-1981) paper 
                      “hamiltonian systems and transformations in hilbert
                       space” (1931) and the role of  John von Neumann (1903-
                         1957)

1.2.3  Measure theory for the dynamical system of  non linear
                         mechanics (1937): the work of  Nikolay M. Krylov

          (1879-1955) with Nikolay N. Bogolyubov (1909-1992)

13
28

31

34

42

53

56

59

62

65

67

71

80



2.  Fascination and risk. Aspects of  Andrej N. Kolmogorov’s 
    intellectual trajectory in Soviet science until 1941 

2.1      The testimony of a former student: A b r i e f conversation 
         between Vladimir Igorevich Arnol’d (1937-2010) and
     Kolmogorov in 1984 101

2.2      Reading Camille Flammarion and Kliment A. Timirjazev. 
          Kolmogorov as member of the Russian “intelligentsia
          science”  
2.3     A silent work. Mathematics and the study of  nature 

2.3.1  The great purge of astronomers

3.  Kolmogorov’s research program for hamiltonian dynamical systems:
    a look into the origins of KAM theory                                        

3.1     “The many-sided interrelations with the most varied branches of  
          mathematics”: a metric and spectral approach to the 
         problems of  classical mechanics (1954)
3.2      Kolmogorov flips his cards: the paper “The preservations of  
         conditionally periodic motions under small variations of  the 
         hamiltonian function”

3.2.1  The statement and meaning of  the theorem on the 
          persistence of  invariant tori in nearly integrable 
          hamiltonian systems
3.2.2  The Diophantine condition: from Carl Ludwig Siegel 
         (1896-1981) to Kolmogorov  

3.3     The roots of  Kolmogorov-Arnol’d-Moser (KAM) theory
3.3.1  KAM theorem or Kolmogorov’s theorem?

Concluding remarks                                                                           

Bibliography
Introductory note
Sources and studies

85

90

94

101
109

113

117

126

127

133

139
144

151

157
157
159



Introduction
A lecture at the International Congress of  Mathematicians, Amsterdam 1954 – and the “true
picture of  classical mechanics”

Fig 1.1. Extract from the program of  the International Congress of  Mathematicians, Ams-
terdam, 1954.1

It was a surprise to me that I would have to present a paper at the final session
of  the Congress in this large hall, which had been known to me rather as a
place for the performance of  great musical compositions of  the world con-
ducted by Mengelberg2. The paper which I have prepared, without taking into
account that it would occupy such an honourable position in the programme
of  the Congress, is devoted to a rather special range of  problems. My aim is
to elucidate ways of  applying basic concepts and results in the modern general
metrical and spectral theory of  dynamical systems to the study of  conservative
dynamical systems in classical mechanics. however, it seems to me that the
subject I have chosen may also be of  broader interest, as one of  examples of
the appearance of  new, unexpected and profound relationships between dif-
ferent branches of  classical and modern mathematics.
In his famous address at the Congress in 1900, D. hilbert said that the unity
of  mathematics and the impossibility of  its division into independent
branches stem from the very nature of  the science of  mathematics.

Andrei N. Kolmogorov’s closing speech at the 1954 International Congress
of  Mathematicians at Amsterdam, printed text in the Congress Proceedings (Kol-
mogorov 1957); English translation in Kolmogorov’s Selected works
(Tikhomirov ed. 1991, p. 355)3.

1 (Gerretsent, De Groot 1957, p. 126).
2 Reference to the Dutch conductor Willem Mengelberg (1871-1951).
3 See the Introductory Note to the Bibliography.
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With the above-quoted words, Andrej Nikolaevich Kolmogorov (1903-
1987) began his invited plenary lecture at the final session of  the International
Congress of  Mathematicians (ICM) on the afternoon of  September 9, 1954,
held in the Concert hall (Concertgebouw) in Amsterdam, Netherlands. It was
the second ICM meeting after the interruption caused by the war, and the first
at which a delegation from the USSR was present.

The text of  the lecture, published in the Proceedings of  the ICM in 1957 (in Russ-
ian, 19 pages; Kolmogorov 1957), is an engaging and elegant example of  Kol-
mogorov’s scientific writing. Just as the hungarian-born American
mathematician John von Neumann (1903-1957)4 had opened the Congress on
September 2, Kolmogorov chose to begin by reinforcing a central claim about
the unity of  mathematics – an idea famously articulated by David hilbert
(1862-1943) in his celebrated address at the paris ICM in 1900. Kolmogorov
blended hilbert’s exhortation to 20th-century mathematicians with a reflection on
the particular kind of  continuity that characterizes mathematics: a link between past
and future, between what he called classical mathematics and modern mathematics.

The title of  Kolmogorov’s lecture, The General Theory of  Dynamical Sys-
tems and Classical Mechanics, thus alludes both to the centuries-old tradition of
studying motion through differential equations5 and to the 20th-century the-
ory of  dynamical systems – a field rooted in classical mechanics but enriched
by new mathematical tools for describing any phenomenon evolving in time.

The adjective “classical” underscores the break between the tradition
of  rational mechanics6 – from its Newtonian foundations to its reformulations by
Joseph-Louis Lagrange (1736-1813) and William Rowan hamilton (1805-1865) –
and the theoretical revolutions of  the early 20th century:7 quantum mechanics and

4 (Redei 1999).5 For the history of  mechanics, see the comprehensive works by (Duhem 1905), (Borel 1943),
and (Dugas 1950). For pre-modern mechanics, see (Claggett 1959). See also the essays in
Truesdell 1976a, 1976b), and Fraser’s review of  the research up to the mid-1990s (Fraser
1994). Among more recent contributions, see (Dell’Aglio 1993), (Barrow-Green 1997),
(panza 2003), (pulte 2003), (Israel 2015), and (Fraser & Nakane 2023). Differential equations
were used to describe physical phenomena beyond motion, and mechanics inspired the de-
velopment of  the broader field of  mathematical physics in the 18th and 19th centuries.6 This expression is uncommon in English; see (Fraser 1994) for further commentary.7 In fact, the advent of  quantum mechanics – alongside the development of  relativity – in
the early 20th century marked the emergence of  a scientific community of  theoretical physi-
cists that became culturally and institutionally distinct from the world of  mathematicians

14



relativity. As Craig Fraser notes in this regard:8

«With the establishment of  special relativity, it became necessary to introduce the
adjective “classical” to delineate the vast range of  mechanical doctrines from Newton
to Einstein. Classical theories retain their validity and continue to be cultivated ex-
tensively today in mathematical engineering. Nevertheless, since Einstein, the classical
viewpoint has lost its epistemological primacy as final description of  material motion
in space and time.» (Fraser 1994, p. 984).

In a recent paper on A Treatise on the Analytical Dynamics of  Particles and Rigid
Bodies by Edmund Whittaker (1873-1956) – first published in 1904, with a second
edition in 1917 – Severino Collier Coutinho discusses the state of  classical mechanics
during that period:

«Once a flourishing subject, where a remarkable cross-breeding of  mathematics and
physics took place, classical mechanics was considered by many to have reached a
dead end by the first decades of  the twentieth century, except for possible applica-
tions to other fields. By the 1950s, some physicists considered classical mechanics
as useful only as “the springboard for the various branches of  modern physics” and
because it afforded “the student an opportunity to master many of  the techniques
necessary for quantum mechanics” (Goldstein 1950, p. ix).
At about the time that physicists were expressing such thoughts, the tide was already
turning in favor of  classical mechanics. This was spearheaded by the needs of  the
age of  space exploration and by new advances on the theoretical side. Chief  among
these were Kolmogorov’s results concerning poincaré’s “problème Général de la
Dynamique” (poincaré 1899, vol. 1, chapter 1, §13, p. 32). presented at the 1954 In-
ternational Congress of  Mathematicians, these results would give rise to what is now
called KAM theory.» (Coutinho 2014, p. 356).

Let us also quote the provocative Clifford Truesdell in the concluding
section of  his 1976 History of  Classical Mechanics, titled On the Decline of  Classical
Mechanics:

(Faddeev 1995).8 In his previously mentioned contribution on classical mechanics in The Companion Encyclo-
pedia of  the History and Philosophy of  the Mathematical Sciences, edited by Grattan-Guinness (Fraser
1994).
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«The word “classical” has two senses in scientific writing; (1) acknowledged as being
of  the first rank or authority, and (2) known, elementary, and exhausted (“trivial” in
the root meaning of  that word). In the twentieth century mechanics based upon the
principles and concepts used up to 1900 acquired the adjective “classical” in its second
and pejorative sense, largely because of  the rise of  quantum mechanics and relativity.
“Fundamental” in physics came to mean “concerning extremely high velocities, ex-
tremely small sizes, or both”. physicists gave less and less attention to classical me-
chanics because they thought nothing more could be learned from it and nothing
new discovered about it, although of  course they continued to use it in the design of
the experimental apparatus with which they claimed to controvert it. At about the
same time “applied” in mathematics came to refer not to the object studied but to
the originality and logical standards of  the student, again in a pejorative sense.
Engineers still had to be taught classical mechanics, because in terms of  it they could
understand the machines with which they worked and could devise new machines
for new purposes. Research in mechanics came to be slanted toward the needs of  en-
gineers and to be carried out largely by university teachers who regarded mathematics
as a scullery-maid, not a goddess or even a mistress.» (Truesdell 1976, pp. 127-128).

The exciting new developments in physics stood in sharp contrast to a
profound theoretical impasse in classical mechanics. This impasse emerged
through the brilliant contributions of  the French scholar Jules-henri poincaré
(1854-1912) to the three-body problem in celestial mechanics at the end of
the 19th century.9 poincaré recognized that the mathematical structures used
to describe natural phenomena often exhibited irregularity – or what would
later be called chaos – thereby casting serious doubt on the possibility of  pre-
dicting their evolution over time.10

This theoretical and epistemological crisis in classical mechanics chal-
lenged its central role within the mathematical sciences – especially in light of
the growing vitality of  modern algebra and other branches of  mathematics that
explored abstract structures independently of  their connections to physical phe-
nomena, technological developments, or practical applications (Israel 2015).

9 In a recent essay on “modern” classical mechanics, halliwell and Sahakian (2020) remind
us that “motions within the Solar System were the most important testing ground for classical
mechanics in the first place” (p. xiv).
10 See (Dahan Dalmenico et al. (eds) 1992). On mechanism as an underlying metaphysics of
science – highlighting the crucial role of  classical mechanics in scientific thought and its sub-
sequent crisis – see (Israel 2015).
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The emergence of  a new, qualitative theory of  differential equations –
the theory of  dynamical systems, beginning with the seminal contributions
of  henri poincaré and the American mathematician George David Birkhoff
(1884-1944) – revealed potential applications beyond classical mechanics.
These included phenomena in the life sciences, human social and economic
systems, and engineering problems modeled by nonlinear differential equa-
tions.11 Recent studies on the origins of  dynamical systems theory have illu-
minated the diverse research lines that developed during the “decline of
classical mechanics,” encompassing the rise of  mathematical modeling and
efforts to apply classical mechanical principles to problems in biology, de-
mography, and economics.

«From poincaré to the 1960s, the mathematical study of  dynamical systems devel-
oped in the course of  a longue-durée history that cannot be unfolded in a cumulative,
linear fashion. In particular, this history is not reducible to that of  a mathematical
theory (which might be called “dynamical systems theory” or the “qualitative theory
of  differential equations”) made by academic mathematicians who would have all
contributed a stone to the final edifice. In fact, this history unfolds along various
geographic, social, professional, and epistemological axes. It is punctuated by abrupt
temporal ruptures and by transfers of  methods and conceptual tools. It involves
scores of  interactions among mathematics, engineering science, and physics along
networks of  actors with their specific research agendas and contexts. Finally, it is
characterized by countless instances of  looping back to the past, to poincaré’s work
in particular, which are so many occasions for new starts, crucial reconfigurations,
and reappreciation of  history.» (Aubin, Dahan Dalmedico 2002 pp. 278-279).

This area received sustained attention in the Soviet Union, where Birk-
hoff ’s work was further developed in connection with engineering applica-
tions – particularly in the field of  nonlinear mechanics – as Simon Diner has
emphasized:12

11 The origins and development of  dynamical systems theory have been the focus of  histor-
ical research since the 1990s, largely driven by renewed interest in the debate over chaos ver-
sus determinism. See (Dahan Dalmedico et al. (eds) 1992); (Aubin and Dahan Dalmedico
2002); (holmes 2007); and (Franceschelli et al. (eds) 2007). On henri poincaré’s contributions,
see (holmes 1990) and (Barrow-Green 1997). For Birkhoff ’s work, see (Aubin 2005) and
(Dell’Aglio 2003). On the topic of  stability from poincaré to Birkhoff, see (Roque 2011).
12 In his contribution to the volume edited by (Dahan Dalmedico et al. 1992), Simon Diner
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«[...] le grand public en Occident ignore largement que ce sont essentiellement des
savants russes qui ont pendant cinquante ans exploité la partie de l’héritage d’henri
poincaré, concernant la “théorie qualitative des systèmes dynamiques” et la “méca-
nique non linéaire” dont le chaos déterministe n’est qu’un des aspects les plus spec-
taculaires. 
Situation créée par la conjonction de l’isolement relatif  de l’Union Soviétique et les
mobiles internes du développement des mathématiques dans un univers de la physique
où la mécanique quantique a ravi la vedette à la mécanique classique. Le langage de
poincaré semblait opaque et ses idées en ont souffert, d’autant plus que les applica-
tions qu’il envisageait ne concernaient que l’astronomie.» (Diner 1992, pp. 331-332).

“The problem of  integrating systems of  differential equations in clas-
sical mechanics,” Kolmogorov reminded the audience in Amsterdam, had
been “a focal point for the mathematics of  the 19th century” – as if  urging
a renewal of  ties with the mathematical past. The goal of  his lecture was to
present a new research program: metrical and spectral methods – specifically,
20th-century measure theory in hilbert spaces – could shed light on key un-
resolved issues in classical mechanics, with particular attention to hamiltonian
conservative dynamical systems, which lie at the heart of  celestial mechanics.13

This area had been somewhat neglected within the mathematical com-
munity since the late 1930s, when interest in classical approaches to celestial
mechanics began to wane.14 As such, the topic of  his Amsterdam lecture may
have appeared surprising or even outdated, addressing a branch of  classical
mechanics that had received little attention for over fifteen years, both in the
Soviet Union and internationally – namely, the study of  systems in celestial
mechanics, including the critical three-body problem.

In short, in presenting his research to an international audience that
had largely moved away from this field, Kolmogorov framed the problem in
the following terms:

emphasized that the apparent gap between poincaré’s work and Stephen Smale’s contribu-
tions was not real, but rather a consequence of  the “ignorance of  the Russian contributions”
during the Cold War era and the separation between the West (NATO countries) and the
Soviet Union and its Warsaw pact allies (Diner 1992). See also (Nemytskii 1957).
13 For a discussion of  the meaning of  hamiltonian systems, see the Appendix.
14 This historical transformation – and the shifting status and relationship between mathe-
matical physics and theoretical physics in the early 20th century – may warrant further in-
vestigation.
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«For conservative systems, the metrical approach is of  basic importance making it
possible to study properties of  a major part of  motions. For this purpose, contem-
porary general ergodic theory has elaborated a system of  notions whose conception
is highly convincing from the viewpoint of  physics. however, up to now the progress
made towards the application of  these modern approaches to the analysis of  specific
problems of  classical mechanics has been more than limited. [...] I believe that the
time has now come when considerable more rapid progress can be made.» (Kol-
mogorov 1957, eng. Tr. 1991, pp. 356-357).

Two pivotal theorems had been published by Kolmogorov just a few
days before his Amsterdam lecture, on August 31, in a paper appearing in the
proceedings of  the Soviet Academy of  Sciences («Doklady Akademii Nauk
SSSR»), titled “On the persistence of  conditionally periodic motions under a
small change in the hamilton function” (in Russian; Kolmogorov 1954).
These theorems demonstrated the application of  new mathematical methods
to hamiltonian conservative dynamical systems and paved the way for further
developments. Moreover, they suggested that the impasse noted by poincaré
– particularly regarding the three-body problem in celestial mechanics – could,
at least in part, be overcome.

The theoretical significance of  Kolmogorov’s research program, espe-
cially in the context of  the evolving status of  classical and celestial mechanics
within the broader interplay between mathematics and physics, forms the
central focus of  this book. My aim is to explore its cultural and intellectual
origins: why and how Kolmogorov formulated the program, and how the ini-
tial theorems he proposed served as foundational elements for its realization.

Scott Dumas has emphasized the key epistemological role of  Kol-
mogorov’s contribution in the development of  modern science:

«Right from the start, after enunciating his laws of  mechanics and gravitation, Isaac
Newton ran into difficulties using those laws to describe the motion of  three bodies
moving under mutual gravitational attraction (the so-called ‘three body problem’).
For the next two centuries, these difficulties resisted solution, as the best minds in
mathematics and physics concentrated on solving other, increasingly complex model
systems in classical mechanics (in the abstract mathematical setting, to ‘solve’ a sys-
tem means showing that its trajectories move linearly on so-called ‘invariant tori’).
But toward the end of  the 19th century, using his own new methods, henri poincaré
confronted Newton’s difficulties head-on and discovered an astonishing form of
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‘unsolvability,’ or chaos, at the heart of  the three-body problem. This in turn led to
a paradox. According to poincaré and his followers, most classical systems should
be chaotic; yet observers and experimentalists did not see this in nature, and math-
ematicians working with model systems could not (quite) prove it to be true either.
The paradox persisted for more than a half  century, until Andrey Kolmogorov un-
raveled it by announcing that, against all expectation, many of  the invariant tori from
solvable systems remain intact in chaotic systems. These tori make most systems
into hybrids – they are a strange, fractal mixture of  regularity and chaos.» (Dumas
2014, preface).

Kolmogorov’s research program led to the development of  a new
mathematical theory: the so-called KAM theory, named after Kolmogorov
and two younger scholars – his former student Vladimir Igorevich Arnol’d
(1937-2010) and Jürgen Moser (1928-1999).15 As Dumas notes:

«It is not a stretch to rank KAM theory alongside the revolutions in modern physics.
But KAM theory [...] also had the misfortune of  playing out over roughly the same
interval during which the revolutions of  modern physics took place. Not surprisingly,
in that period, physicist abandoned classical mechanics to the few hardy mathemati-
cians who reanimed interested in. The physicists returned with wondrous stories of
their exploits in quantum mechanics, relativity, and nuclear physics. The time has come
for mathematicians to tell their tales from this period in a broad setting, too.» (Dumas 2014,
preface, my emphasis).

My investigation was inspired by Dumas’s call to develop a “story of
KAM” to address the lack of  awareness – both among mathematicians and
within the broader scientific community – of  a line of  research aimed at com-
pleting the “true picture of  classical mechanics”:

«often thought to have been fully outlined in the 17th century, this picture was not
complete until the latter part of  the 20th century. Although the mathematical theory
is mostly complete, certain applications to problems in physics – especially in celestial
and statistical mechanics – have been developed only with great difficulty, and some
remain controversial and uncertain even today.» (Dumas 2014, preface, p. 7).

15 See (Celletti, Froeschlé, and Lega 2003); (Chierchia 2008, 2012); (Dumas 2014, Chapter
4); (hubbard 2014); and (Diacu and holmes 1996).
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Vladimir Arnol’d was among the first to raise the question of  the ori-
gins of  Kolmogorov’s contribution in the 1950s. having asked this question
directly to his former teacher, he later transmitted a testimony regarding a
brief  conversation in 1984 – thirty years after the Amsterdam lecture (Arnol’d
1997, 2000). This testimony provided a crucial clue and stimulus for my in-
vestigation.

historiography plays a key role in developing a “storytelling” approach
that can be shared and internalized as part of  the collective understanding
of  mathematical breakthroughs. Mathematical treatises often obscure the
original context of  discoveries, presenting achievements in a normalized, log-
ically polished form. My contribution seeks to reconstruct the intellectual and
cultural conditions that shaped Kolmogorov’s research – a foundational con-
tribution that redefined the status of  classical mechanics in the 20th century
– and to illuminate the broader cultural context and often difficult paths
through which mathematical knowledge is produced.

Reconstructing a Network of Scholars and the Interplay of Disciplines and Methods
Let us begin with Kolmogorov’s own words concerning the intellectual ori-
gins of  his research program. In a note written for the first volume of  his Se-
lected Papers, published in Moscow in 1985 and edited by Vladimir Mikhailovich
Tikhomirov (b. 1934), he explained:

«My papers on classical mechanics appeared under the influence of  von Neumann’s
papers on the spectral theory of  dynamical systems and, particularly under the in-
fluence of  the Bogolyubov-Krylov paper of  1937. I became extremely interested in
the question of  what ergodic sets (in the sense of  Bogolyubov-Krylov) can exist in
the dynamical systems of  classical mechanics and which of  the types of  these sets
can be of  positive measure at present this question still remains open). To accumulate
specific information we organized a seminar on the study of  individual examples.
My ideas concerning this topic and closely related problems aroused wide response
among young mathematicians in Moscow.» (Kolmogorov 1991, p. 521).16

16 Kolmogorov’s research program on hamiltonian conservative systems in classical me-
chanics was the focus of  a seminar he led in Moscow during 1957-1958. This seminar gave
rise to further research – notably by Vladimir Arnol’d, who worked on the three-body prob-
lem, and Yakov Sinai (see §§ 2.1 and 3.3).
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Three papers from the 1950s were collected in the Selected Works section
on classical mechanics, including the published version of  Kolmogorov’s Am-
sterdam lecture.17 Yet Kolmogorov himself  noted that these works had been
prepared under the influence of  earlier contributions published in the 1930s.
The first two papers are quite succinct and contain only a couple of  references
each. In contrast, the more comprehensive overview presented in the pub-
lished version of  the Amsterdam lecture includes 23 bibliographical refer-
ences, spanning the years 1917 to 1954.18

The motivations behind Kolmogorov’s intellectual and cultural gesture
have been considered by Arnol’d, who described it as an intriguing enigma.
A comparison between the authors Kolmogorov mentioned in conversation
with Arnol’d, the references cited in his mathematical papers from 1953, 1954,
and 1957, and those listed in the 1985 note included in Selected Works reveals
two distinct groups or networks of  scholars.

On one hand, we find figures active in celestial mechanics following
henri poincaré’s seminal Les méthodes nouvelles de la mécanique céleste (1892-1899).
Notable among them are Carl Vilhelm Ludvig Charlier (1862-1934), author
of  Die Mechanik des Himmels (1902-1907), and Edmund Whittaker (1873-
1956), known for his 1899 report on the three-body problem, which later
evolved into the classical textbook A Treatise on the Analytical Dynamics of  Par-
ticles and Rigid Bodies. These works posed foundational challenges for future
research in classical mechanics. In addition, there are younger scholars who
engaged with both quantum mechanics and relativity, while still addressing
unresolved issues stemming from poincaré’s research – such as Jean-François

17 The three papers by Kolmogorov, originally published in Russian, are available in English
in the reliable translation by Vladimir M. Volosov, published in the 1991 English edition of
Volume I of  Kolmogorov’s Selected Works (Tikhomirov 1991). Two of  the papers appeared in
«Doklady Akademii Nauk SSSR», – the first in November 1953 (Kolmogorov 1953), and
the second in August 1954 (the previously mentioned Kolmogorov 1954, in which he states
two crucial theorems). The third paper (Kolmogorov 1957) is the version of  his lecture at
the International Congress of  Mathematicians in Amsterdam, published three years later in
the Proceedings of  the Congress, edited by Johan C.h. Gerretsen and Johannes De Groot (Ger-
retsen and De Groot 1957). Additional English translations and one French version of  the
Amsterdam lecture are also available (see Introductory Note to the Bibliography).
18 The list includes Kolmogorov (1953, 1954). The earliest reference is to émile Borel’s Leçons
sur les fonctions monogènes uniformes d’une variable complexe (1917), and the most recent is to the
1954 paper by the Soviet mathematician Mstislav Igorevich Grabar (1925-2006), “On
Strongly Ergodic Dynamical Systems.”
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Chazy (1882-1955) in France, and Otto Yulyevich Schmidt (1891-1956), a
polymathic Soviet scholar, close to Kolmogorov, and editor of  the Great Soviet
Encyclopedia.19

On the other hand, there is a more tightly connected group of  scholars
associated with George Birkhoff ’s (1884-1944) emerging theory of  dynamical
systems. Between 1931 and 1937, this network explored hamiltonian systems
in classical mechanics using hilbert spaces and measure theory – an approach
that played a crucial role in the development of  modern ergodic theory. A
foundational contribution in this area was Bernard O. Koopman’s (1900-1981)
1931 paper, “hamiltonian Systems and Transformations in hilbert Space”
(Koopman 1931).

Let us now turn to Kolmogorov’s own words on this development:

«After the work of  h. poincaré, the fundamental role of  topology for this range of
problems became clear. On the other hand, the poincaré-Carathéodory recurrence
theorem initiated the “metrical” theory of  dynamical systems in the sense of  the
study of  properties of  motions holding for “almost all” initial states of  the system.
This gave rise to the “ergodic theory”, which was generalized in different ways and
became an independent centre of  attraction and a point of  interlacing for methods
and problems of  various most recent branches of  mathematics (abstract measure
theory, the theory of  groups of  linear operators in hilbert and other infinite-dimen-
sional spaces, the theory of  random processes, etc.).» (Kolmogorov 1957, eng. tr.
1991, pp. 355-356).

The variety of  references suggests that, in the early decades of  the 20th
century, the young Kolmogorov closely followed contemporary developments
both in classical mechanics – particularly the central question of  the three-
body problem in celestial mechanics – and in Birkhoff ’s emerging approach
to a general theory of  dynamical systems, grounded in the qualitative analysis
of  differential equations.

In Chapter 1, I examine the mathematical landscape that forms the back-
drop to Kolmogorov’s research program and the initial development of  KAM
theory. This includes a discussion of  key aspects in the evolution of  classical
mechanics and the general theory of  dynamical systems during a transitional pe-
riod in the history of  mechanics, spanning the late 19th and early 20th centuries.

19 See (Chazy 1929, 1932) and (Schmidt 1947).
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Andrej N. Kolmogorov in Soviet Science and His Contribution to Classical Me-
chanics
Understanding the origins of  Kolmogorov’s seminal contribution – his iden-
tification of  new directions for addressing long-standing problems in classical
mechanics – has led me to explore key aspects of  the intellectual and cultural
trajectory of  this exceptional 20th-century scholar. Kolmogorov confronted
a period marked by the radical transformation of  the relationship between
physics and mathematics, and by the changing status of  classical mechanics,
long considered the core of  modern science. he lived through an era of  pro-
found upheaval in the former Russian Empire, including the development of
a rich network of  scientific schools and the growing entanglement of  science,
technology, the state, and civil society.

Kolmogorov’s contributions and research program in classical mechan-
ics are deeply rooted in his scientific biography and the broader context of
Soviet science.20 As he told Arnol’d, “he had been thinking about this problem
for decades, starting from his childhood” (Arnol’d 1997, p. 1). his former
student Yakov Grigorevich Sinai similarly observed that “apparently the in-
terests of  Kolmogorov in ergodic theory had already started in the 1930s”
(Sinai 1989, p. 833).

Among Soviet researchers in celestial mechanics were the aforemen-
tioned Otto Yulyevich Schmidt, as well as Boris Vasilyevich Numerov (1891-
1941?), a leading figure in the flourishing Soviet astronomical community
supported by a network of  observatories. Birkhoff ’s approach was followed
by prominent Soviet scholars, notably Nikolay M. Krylov (1879-1955) in Kyiv,
who worked in nonlinear mechanics, and Vyacheslav Vasil’evich Stepanov
(1889-1950) in Moscow, who in 1930 initiated a seminar on the qualitative
theory of  differential equations – attended, among others, by Kolmogorov
(Nemytskii 1957).21 “Stepanov was among the first in our country to under-

20 Following Kolmogorov’s death, his former student Vladimir Mikhailovich Tikhomirov (b.
1934) wrote a brief  but insightful biographical essay titled The Life and Work of  Andrei Niko-
laevich Kolmogorov (Tikhomirov 1988). For further references on the literature available on
Kolmogorov, see the Introductory Note to the Bibliography.
21 Nikolai Luzin was the dominant figure in Moscow mathematics at the time; however, the
British statistician David G. Kendall (1918-2007) offered a different perspective in his re-
membrance of  Kolmogorov: «A number of  mathematicians stimulated Kolmogorov’s ear-
liest mathematical research, but perhaps his principal teacher was Stepanov. In 1922
Kolmogorov produced a synthesis of  the French and Russian work on the descriptive theory
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stand the significance of  the metric theory of  general dynamical systems
begun in the works of  poincaré and Birkhoff, and he made an essential con-
tribution to it” (Myshkis, Oleinik 1990, p. 180). Stepanov authored a textbook
on differential equations published in 1936, and a second textbook – co-au-
thored with Viktor Vladimirovich Nemytskii (1900-1967) – on the qualitative
theory of  differential equations, first published in 1947.22 Notably, this latter
work is the only bibliographical reference cited in Kolmogorov (1953). Fur-
thermore, (Sinai 1989) emphasizes that the works of  von Neumann were
being followed closely in the Soviet Union during the 1930s.

Some papers by Kolmogorov dating back to the 1930s reveal his early
interest in the general theory of  dynamical systems and in ergodic theory.
however, the years 1936-1937 marked a sharp intensification of  Stalin’s
purges in the Soviet Union, including a massive campaign against as-
tronomers. A dark period began – culminating with the USSR’s entry into
the Second World War in 1941 – and only came to a close with Stalin’s death
in early 1953. The international scientific connections of  scholars from the
Russian Empire were severely disrupted. During these years, Kolmogorov
appears to have conducted quiet, unpublished work on hamiltonian systems
relevant to the unresolved issues in classical mechanics. As I will argue, his
publications from the 1950s carried not only scientific significance but also
deep cultural and, arguably, political meaning during a time of  reconstruction
and – perhaps – renewed hope.

Chapter 2 focuses on the biographical and cultural factors that shaped
Kolmogorov’s education and intellectual interests, drawing on the growing
body of  literature concerning the evolution of  science and scientific educa-
tion in the Russian Empire, from the Tsarist regime to the Soviet Union. Kol-
mogorov’s engagement in scientific and epistemological debates helps
illuminate his views on the role of  mathematics in the study of  natural phe-
nomena and his enduring commitment to classical mechanics. The chapter
also explores the impact of  Stalin’s purges on the field of  astronomy and the
prevailing emphasis on dissipative systems in technological applications.

of  sets of  points, and at about the same time he was introduced to Fourier series in
Stepanov’s seminar. This was when he made his first mathematical discovery – that there is
no such thing as a slowest possible rate of  convergence to zero for the Fourier coefficients
of  an integrable function.» (Kendall 1991, p. 303).
22 Second edition published in 1949; translated into English in 1960 by princeton University
press.
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These pressures may have led Kolmogorov to carry out his research on ce-
lestial mechanics discreetly during certain periods.

Building on the reconstruction of  the mathematical landscape behind
Kolmogorov’s work in classical mechanics and dynamical systems, and the
contextual elements of  his scientific biography, Chapter 3 examines the for-
mulation and proof  of  his theorem on the persistence of  invariant tori in
hamiltonian systems, as presented in (Kolmogorov 1954). This includes an
analysis of  the Diophantine condition, which is central to the theorem’s proof,
and a comparison with its use in a 1942 paper by the German mathematician
Carl Ludwig Siegel (Ghys 2004). Through this historical analysis, I explore
the significance of  Kolmogorov’s 1954 theorem, along with the lesser-known
second theorem in the same article, which concerns the measure of  the set
of  persistent tori in phase space. Both results are framed within Kolmogorov’s
broader research program in classical mechanics, as outlined in his Amster-
dam lecture. It was within this program that Arnol’d would later apply Kol-
mogorov’s methods to the three-body problem in celestial mechanics (Arnol’d
1963b, 2009).

Finally, I consider aspects of  the transmission of  Kolmogorov’s re-
search program – shaped in part by the Cold War context of  international
scientific relations – and some of  the misunderstandings concerning the bal-
ance between the formulation of  goals and methods, and the standards of
mathematical demonstration. Deepening our understanding of  Kolmogorov’s
seminal work from 1953-54 can thus shed light on the evolution of  mathe-
matical thought in the 20th century, particularly in its relation to science as a
means of  investigating the natural world.

My research has greatly benefited from the advice and insights of  many
scholars in Italy and abroad. I would like to thank my phD supervisors at
Roma Tre University, Luca Biasco and Ana Millán Gasca, for their invaluable
guidance, suggestions, and joint discussions on key historiographical and
mathematical questions. I am also grateful to the Department of  Mathematics
and physics at Roma Tre University, where I was able to conduct my research
in a stimulating and supportive environment. My sincere thanks go to Luigi
Chierchia and Michela procesi, as well as Jessica Elisa Massetti and Shulamit
Terracina.

I am especially thankful to Efthymios Nicolaïdis for his insights into
astronomy in the Soviet Union, and to Alexander Karp for generously sharing
his deep knowledge of  the history of  mathematics and mathematics educa-
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tion in the Russian Empire. I had the privilege of  engaging with him during
and after his visit to the Department of  Education at Roma Tre University.

I also thank Luca Dell’Aglio for his comments and support on histo-
riographical methodology. Special thanks go to Yakov Sinai for his personal
testimony, and to Alfonso Sorrentino for helping to arrange contact with him.
I am also grateful to paola Magrone and Ana Millán Gasca for their support
in preparing this research for publication in Mathemata.

To my family, and to my husband Antonio, I express my deepest affec-
tion and gratitude for their presence and constant encouragement. This book
is dedicated to our daughter Elisa.
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Chronology23

1903, April 25 – Birth of  Andrej Nikolaevich Kolmogorov. his mother died in childbirth.
1906-1910 – homeschooling under the supervision of  his aunts at his maternal grandfather’s
                   estate in Tunoshna (near Yaroslavl).

1910-1917 – Student at the Evgenja Albertovna Repman private school in Moscow.
c. 1919 – Death of  his father.
1920 – Enrolment at Moscow University (mathematics) and the D. I. Mendeleev Institute

            of  Chemical Engineering (metallurgy).
1922-1925 – Mathematics and physics teacher at the potylikhin Experimental School in 

                    Moscow.
1924, January 21 – Death of  Lenin.
1925 – Graduation from Moscow University and beginning of  postgraduate work.
1927 – Dynamical Systems by George David Birkhoff  (1884-1944).
1929 – Researcher at the Institute of  Mathematics and Mechanics, Moscow University.        

           Engages in contemporary debates on the nature of  mathematics.
1929-1930 – Attends Vyacheslav Vassilievich Stepanov’s seminar on the qualitative theory

                   of  differential equations at Moscow University.
1930, June - 1931, May – Academic journey to Germany and France with pavel S. Aleksan-

                                         drov (1896-1982).
1931 – “hamiltonian Systems and Transformations in hilbert Space” by Bernard Osgood

           Koopman (1900-1981).
1932 – “Zur Operatorenmethode in der klassischen Mechanik” by John von Neumann (1903-

          1957).
1932 – proof  of  the quasi-ergodic hypothesis by von Neumann.
1932 – “Dynamical Systems of  Continuous Spectra” by Koopman.
1933 – proof  of  the quasi-ergodic hypothesis by Birkhoff.
1933 – Grundbegriffe der Wahrscheinlichkeitsrechnung (Russian edition in 1936).
1936 – Luzin placed under scrutiny at the Academy of  Sciences.
1936, October 20 – Arrest of  Boris V. Numerov (1891-1941?).
1937 – “La théorie générale de la mesure dans son application à l’étude des systèmes

            dynamiques de la mécanique non linéaire” by Krylov and Bogoliubov.
1937 – “A Simplified proof  of  the Birkhoff-Khinchin Ergodic Theorem” by Kolmogorov.
1938 – Article “Mathematics” by Kolmogorov in the Great Soviet Encyclopedia.

23 Kolmogorov’s papers were originally published in Russian.



1939 – Elected member of  the Academy of  Sciences.
1942 – “Iteration of  Analytic Functions” by Carl Ludwig Siegel (1896-1981).
1942 – Marriage to Anna Dmitrievna Egorova.

1953, March 5 – Death of  Stalin.
1953, November 13 – “On Dynamical Systems with an Integral Invariant on the Torus” by 

                                   Kolmogorov.
1954, August 31 – “On the preservation of  Conditionally periodic Motions under Small

                             Variations of  the hamilton Function” by Kolmogorov.
1954, September 9 – plenary lecture at the ICM in Amsterdam: “The General Theory of

                                  Dynamical Systems and Classical Mechanics”.
1957 – publication of  Kolmogorov’s 1954 lecture in the Proceedings of  the International Congress

           of  Mathematicians, Amsterdam.
1957, Autumn – ph.D. course on the theory of  dynamical systems in Moscow, attended by

                           Vladimir Arnol’d and Yakov Sinai.
1958, March 22 – Talk in paris at the Analytical Mechanics and Celestial Mechanics Seminar,

led by Maurice Janet (1888-1983).
1959 – Arnol’d defends his dissertation under Kolmogorov’s supervision.
1962 – “On Invariant Curves of  Area-preserving Mappings of  an Annulus” by Jürgen Kurt

           Moser (1928-1999).
1963 – “proof  of  a Theorem of  A. N. Kolmogorov on the preservation of  Conditionally

           periodic Motions under a Small Change in the hamilton Function” (Arnol’d, in Russian).
1963 – Foundations of  Mechanics by Ralph h. Abraham (1936-2024).
c. 1984 – Brief  conversation between Kolmogorov and Arnol’d about the origins of  Kol-

              mogorov’s work on invariant tori.
1985 – Short note by Kolmogorov on his papers on classical mechanics published in Volume
           1 of  his Selected Works (in Russian).
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1      The mathematical landscape

The branch of  physics known as “classical mechanics” originated in the
seventeenth century, but wasn’t called that until the discovery of  quantum
mechanics in the 1920s. It was quantum mechanics that most profoundly
changed our understanding of  how and why particles move as they do, and
even what a particle is. Quantum mechanics was so completely different that
the word “classical” had to be added to the older theory to make it clear which
mechanics was meant. At the same time, quantum mechanics was heavily
inspired by the formulations of  classical mechanics by Lagrange and hamilton
dating back to the eighteenth and nineteenth centuries.
In many situations, using quantum mechanics and/or relativity to study a
physical system would be tantamount to shooting a fly with a catapult.
Roughly speaking, classical mechanics works very well (i.e., agrees with
experiments) for macroscopic objects that are moving at speeds much less
than the speed of  light, and where gravity is not too strong – and also where
our experimental measurements are not too precise.
Take the motions of  the planets around the sun and moons round their
planets, for example. Motions with the solar system were the most important
testing ground for classical mechanics in the first place, and for nearly all
purposes classical mechanics in this domain works as well now as it ever did. 

Thomas M. helliwell, Vatche V. Sahakian, Modern Classical Mechanics (2020),
preface, xiii-xiv.

At the end of  the 19th century, the research of  the French scholar
henri poincaré (1854-1912) demonstrated to the international scientific com-
munity that new mathematical tools and conceptual frameworks – so to
speak, “new clothes” for old problems – could offer fresh theoretical per-
spectives on the study of  mechanical phenomena in celestial motion, which,
as helliwell and Sahakian put it in Modern Classical Mechanics (2020), was “the
most important testing ground for classical mechanics” (pp. xiii-xiv).

In the history of  mechanics,1 there has been a steady evolution in math-
ematical tools, shaped by a dynamic tension between physical objects and
mathematical relations. physical objects initially served as the principal moti-

1 See (Dugas 1955), (Clagett 1959), (Truesdell 1968).
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vation for seeking improvements and new approaches, while mathematical
relations – developed in the effort to understand and predict natural phe-
nomena of  motion and stability – gradually acquired an autonomous exis-
tence, independent of  their original physical foundations.

Today, fields such as abstract algebra, topology, functional analysis, and
probability theory exist as autonomous branches of  mathematics. Yet this
current independence can easily obscure the depth of  their historical
connections to the open problems of  mechanics, particularly those in celestial
mechanics, beginning with the classical three-body problem.

The early decades of  the 20th century were a fruitful period for re-
search in both physics and mathematics, marked by disciplinary restructuring.
The foundational developments of  quantum mechanics and the theory of
relativity were accompanied by significant, though often underexplored, ef-
forts to rethink and revitalize 19th-century mechanical studies – what was in-
creasingly coming to be known as classical mechanics. Celestial mechanics
retained a powerful allure for late 19th-century scholars, stemming not only
from Isaac Newton’s groundbreaking work at the heart of  modern mathe-
matical physics, but also from a timeless human aspiration to understand the
positions and motions of  the stars across the celestial sphere (Diacu, holmes
1996; Wilson 1994).

With his three-volume treatise Les méthodes nouvelles de la mécanique céleste
(1892–1899), henri poincaré opened a new path. his qualitative analysis of
differential equations not only introduced innovative mathematical methods
for studying classical dynamics, but also laid the foundation for a new area
of  research: the general theory of  dynamical systems. This mathematical
theory, though abstract and distant from its physical roots, would prove
applicable to a wide array of  phenomena involving temporal evolution across
diverse scientific fields.

It is within this dual framework – classical mechanics and the general
theory of  dynamical systems – that Kolmogorov would present his research
program during his closing lecture at the 1954 International Congress of
Mathematicians in Amsterdam. In this chapter, I examine the mathematical
landscape of  the 1920s and 1930s in both of  these areas, which formed the
background to Kolmogorov’s proposal:

«I had thought for a long time about problems in celestial mechanics, from
childhood, from Flammarion, and then – reading Charlier, Birkhoff, the mechanics
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of  Whittaker, the work of  Krylov and Bogolyubov, Chazy, Schmidt. I had tried
several times, without results. But here was a beginning.» (Kolmogorov, quoted in
Arnol’d 2000, p. 90).

I begin with a concise overview of  research on the three-body problem –
one of  the initial sources of  inspiration for hamilton’s own contributions –
during the late 19th century. In the second part of  the chapter, I examine an
informal research network that connected scholars in the USSR and the USA
during the 1930s. This network, inspired by George David Birkhoff ’s
pioneering work rooted in poincaré’s contributions, was also explicitly
acknowledged by Kolmogorov in the note included in the first volume of  his
Selected Works, published in Moscow in 1985.
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1.1   Between past and future: celestial mechanics at the turn
of  the 20th Century

«ASTRONOMY is not only one of  the most ancient of  the physical sciences,
but also one of  those which present the most alluring invitations to the con-
templative mind. The starry heavens, spangling with countless luminaries of
every shade of  brilliancy, and revolving in eternal harmony round the earth,
constitute one of  the most imposing spectacles which nature offers to our
observation. The waning of  the placid moon, the variety and splendour of
the constellations, and the dazzling lustre of  the morning and evening stars,

must in all ages have excited emotions of  admiration and delight.»

Robert Grant, History of  Physical Astronomy: From the Earliest Ages to the Middle
of  the 19th Century, Comprehending a Detailed Account of  the Establishment of  the
Theory of  Gravitation by Newton, and Its Development by His Successors, with an
Exposition of  the Progress of  Research on All the Other Subjects of  Celestial Physics
(1852), p. i.

The stars and planets – those tiny points scarcely visible to the naked
eye – have long appeared to move undisturbed across the sky, capturing the
imagination of  diverse peoples and cultures who pondered their nature and
motion. The apparent regularity in the movement of  celestial bodies, often
ascribed to divine or supernatural influence, became an object of  study from
the earliest civilizations, as part of  an arithmetical quest to predict lunar and
planetary phenomena. Interest in astronomical events stemmed from multiple
motivations: most notably, knowledge of  celestial periodicity provided insight
into seasonal cycles, essential for agriculture. Yet, alongside this practical
concern was a profound human desire to understand the visible world.

The systematization of  mechanics into a unified framework, culminat-
ing in Newton’s formulation of  the law of  universal gravitation, brought new
depth to the mechanical study of  celestial bodies. The planets of  the solar
system, being approximately spherical and small in size relative to the vast
distances separating them, could be modeled as point masses, allowing New-
ton’s laws to be applied to their dynamics.

If  only the interaction between the Sun and each individual planet were
considered, the resulting motion would be an elliptical orbit around the Sun,
which occupies one of  the foci – an outcome described by Kepler’s laws. This
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scenario defines the so-called “two-body problem,” initially solved geomet-
rically by Newton. A more rigorous mathematical treatment, however, was
later developed by Swiss mathematicians Johann Bernoulli (1667-1748) and
Leonhard Euler (1707-1783).

Solved, in the context of  classical mechanics, means that the system of
differential equations governing the two-body problem has been shown to
be integrable – that is, it admits a sufficient number of  independent conserved
quantities (or first integrals) to allow for a complete analytical solution. In
this case, the key physical parameters of  the system – such as the semi-major
axis and the eccentricity of  the elliptical orbit – remain constant over time
or, in mathematical terms, are constants of  motion.

The two-body problem. The two-body problem can be
schematized as two material points moving in a three-dimen-
sional Euclidean space; each point is therefore identified by three
coordinates and, for this reason, the problem has 6 degrees of
freedom. If  we call  x1=(x11, x12, x13) and x2=(x21, x22, x23) the
spatial coordinates of  the two bodies 1 and 2, m1 and m2 the two
masses, and F1 and F2 the forces acting on bodies 1 and 2, re-
spectively, then the equations of  motion are

For its resolution, the problem is shown to reduce to two decou-
pled problems: one is a trivial uniform rectilinear motion, and
the other becomes a two-degree-of-freedom problem. This re-
sults in a system of  two ordinary differential equations in two
unknowns, one of  which depends on a single variable, allowing
the solution to be found.

In the Solar System, however, not only do planet-Sun interactions play
a role, but also, albeit with lower intensity, planet-planet interactions and,
additionally, interactions between a planet and its satellites. These forces
perturb the elliptical orbits described by individual planets, and although the
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effect is slow, catastrophic scenarios over very long time periods – such as
the collision of  two planets or the ejection of  a planet from its orbit – cannot
be ruled out a priori.

An integrable system, such as the two-body problem in which the equa-
tions of  motion can be solved exactly, is thus altered by small perturbations
arising from other gravitational interactions, making the resulting problem
generally non-integrable. The two-body problem is one of  the few cases of
integrable systems, represented by a system of  equations describing the mo-
tion of  two planets, which can be solved exactly. Other examples include one-
dimensional hamiltonian systems, such as the harmonic oscillator and the
simple pendulum, the so-called Lagrange top, the Kovalevskaya top, geodesic
motion on an ellipsoidal surface, and others.

By contrast, the motion of  a planet in the Solar System, when consid-
ering gravitational interactions with other planets or celestial bodies, becomes
a non-integrable problem that is practically intractable from a mathematical
perspective. The planets are in constant motion, their relative positions change
over time, and the forces they exert on one another continuously vary in both
direction and intensity throughout their orbital motion. If  these forces were
to balance each other out, the planets would remain in the same elliptical or-
bits observed by Newton indefinitely. Otherwise, significant deviations from
their expected orbital motion could occur.

Mathematically solving a differential equation problem with such a large
number of  variables becomes extremely complex.

however, it is important to note that planet-planet and planet-satellite
interactions are negligible compared to the interactions between planets and
the Sun. This is because gravitational attraction depends on the masses of
the interacting bodies, and planetary masses are significantly smaller than that
of  the Sun.2

perturbation theory deals with problems in which a small parameter
appears (“small” in the sense that it is constrained not to exceed a certain
threshold value). In the three-body problem involving the Earth, Sun, and
Mars, this parameter is represented by the small ratio between the mass of
Mars and the mass of  the Sun. The parameter characterizes the difference
between the system under study and a similar, “nearby” system that can be
integrated exactly.

2 The mass of  the planets is about one-thousandth part of  the mass of  the Sun.
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Thus, we are dealing with systems – typically written in the hamiltonian
formalism – that deviate only slightly from an integrable system. perturbation
theory, initially addressed by Newton from a geometric perspective, became
a central topic in celestial mechanics starting in the second half  of  the 18th
century, with contributions from Laplace and Lagrange, followed by Charles
Eugène Delaunay (1816-1872)3 and Urbain Le Verrier (1811-1877).

This provided the starting point for poincaré’s work at the end of  the
19th century.

poincaré built upon the existing studies of  the Finnish astronomer
Johan August hugo Gyldén (1841-1896), who worked at the pulkovo and
Stockholm observatories. Gyldén’s objective was to use perturbation theory
to derive mathematical series that could describe planetary orbits over
arbitrarily long time periods. “[…] le savant qui a rendu à cette branche de
l’Astronomie les services les plus éminents est sans contredit M. Gyldén,”
poincaré wrote in the introduction to the first volume of  Les méthodes nouvelles
de la mécanique céleste (poincaré 1892-99). In this way, it would be possible to
answer the fundamental question of  whether the Solar System is stable or
not (Markkanen 2007, Bohlin 1897).

Let us now examine in greater detail how perturbation theory applies
to the problem of  planetary motion in the Solar System.

As previously mentioned, in a first approximation, planet-planet
interactions could be neglected due to their relative insignificance. We can
therefore begin by considering the system of  differential equations that
account only for the interactions between individual planets and the Sun. This
problem is integrable: as in the two-body problem, planets describe elliptical
orbits around the Sun for infinite time. however, if  we no longer neglect the
smaller interactions, the orbits will undergo variations. This leads to what is
known as the n-body problem, where n represents the number of  celestial
bodies interacting with one another.

The so-called n-body problem, with n ≥ 3, is therefore considerably
more complex than its reduction to just two bodies – it is enough to consider
that for n = 3 there is not a general solution (Barrow-Green 1997, Marco-
longo 1915, Whittaker 1899). In his A Treatise on the Analytical Dynamics of
Particles and Rigid Bodies; with an Introduction on the Problem of  Three Bodies

3 Delaunay developed a theory of  the motion of  the Moon based on the theory of
perturbations (Delaunay 1860-67). See §1.4.2.
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(Whittaker 1917), first published in 1904, the English mathematician Edmund
Taylor Whittaker (1873-1956) introduces chapter xIII, The Reduction of  the
Three-Body Problem, defining the problem as “the most celebrated of  all
dynamical problems”:

«The most celebrated of  all dynamical problems is known as the problem of  Three Bodies,
and may be enunciated as follows: Three particles attract each other according to
the Newtonian law, so that between each pair of  particles there is an attractive force
which is proportional to the product of  the masses of  the particles and the inverse
square of  their distance apart: they are free to move in space, and are initially
supposed to be moving in any given manner; to determine their subsequent motion.
The practical importance of  this problem arises from its applications to Celestial
Mechanics: the bodies which constitute the solar system attract each other according
to the Newtonian law, and (as they have approximately the form of  spheres, whose
dimensions are very small compared with the distances which separate them) it is
usual to consider the problem of  determining their motion in an ideal form, in which
the bodies are replaced by particles of  masses equal to the masses of  the respective
bodies and occupying the positions of  their centres of  gravity. The problem of  three
bodies cannot be solved in finite terms by means of  any of  the functions at present
known to analysis. This difficulty has stimulated research to such an extent, that
since the year 1750 over 800 memoirs, many of  them bearing the names of  the
greatest mathematicians, have been published on the subject.» (Whittaker 1917,
p. 339, my emphasis).

To describe the problem in terms of  differential equations, we can use the
notation adopted by Whittaker himself  in (Whittaker 1917).

The three-body problem: Let m1, m2 and m3 be the masses of
three bodies and r23, r13 and r12 the reciprocal distances between
them. Given an orthogonal system of  Cartesian axes Oxyz, we can
denote the coordinates of  the positions of  the three masses with
respect to it as (q11, q12, q13), (q21, q22, q23) and (q31, q32, q33).
The force of  attraction between two masses mi and mj is F = kmi

mj r -2 , with k is a constant and, with a suitable choice of  units,
we can assume k = 1.
The kinetic energy and potential energy of  the system of  three
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mutually attracting masses are, respectively:

and

Thus the equations of  motion of  the system formed by the three
bodies are:

These are nine second-order differential equations, and therefore
the system is of  order 18.
Lagrange would later show that this system can be reduced to a
sixth-order systema.
If  we want to write the equations in hamiltonian form, we can
denote:

where pij = mi qij denotes the j-th component of  the momentum
of  the mass body mi . So, the equations of  the three-body system
are:

with i, j = 1, 2, 3.

a See (Whittaker 1917, pp. 338-355).

Is it possible to explicitly find its general solution for all times? One
way to prove the integrability of  the problem – and therefore its complete
resolution – is by searching for uniform integrals: a uniform (or prime)
integral for a problem defined by a system of  differential equations can be
defined as a function that remains constant along the solutions of  the system.
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For example, the total energy of  the system is a uniform integral in the
three-body problem, because it remains constant.

The existence of  a number of  independent prime integrals equal to
the order of  the system of  differential equations (i.e., the number of  degrees
of  freedom of  the problem) implies the integrability of  the problem.

Therefore, if  we wanted to prove the solvability of  the three-body
problem through the existence of  uniform integrals, we would need to find
eighteen of  them, each independent of  the others:

«[...] the problem of  three bodies possesses 10 known integrals: namely the six
integrals of  motion of  the center of  gravity, the three integrals of  angular
momentum, and the integral of  energy; these are generally called the classical integrals
of  the problem.» (Whittaker 1917, p. 358).

The German mathematician and astronomer Ernst heinrich Bruns
(1848-1919), in an 1887 paper (Bruns 1887), demonstrated that for the general
three-body problem there are no uniform integrals beyond the classical ones.4

Given these difficulties, the study of  the system can be reduced to a
simpler case: the so-called restricted three-body problem, in which a particle of
negligible mass moves under the attraction of  two other bodies of  positive
mass rotating in circles about their center of  gravity.

Nevertheless, shortly after Bruns’ paper, poincaré formulated in his
Mémoire (poincaré 1890) – and subsequently in the first volume of  (poincaré
1892-99) – an extension of  Bruns’ theorem, proving the non-existence of
uniform integrals also for the restricted three-body problem. Therefore, the
integrability problem cannot be addressed by going this route. Another
approach is to use perturbation theory.

The solutions of  the equations of  motion can be described by means
of  formal power series that depend on the perturbation which deviates the
problem from the closest integrable one. In addition to Gyldén’s contribution,
there was another Swedish scientist, Anders Lindstedt (1854-1939), who
developed one of  the series of  perturbations that describe the solutions –
still widely used in celestial mechanics today.

While Gyldén was an astronomer with a strong theoretical bias,
Lindstedt combined theoretical interest in the three-body problem with

4 See (Whittaker 1899, pp. 157-159).
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practical applications. The Lindstedt series was the method most used by
poincaré and by his successors, including Kolmogorov.

The main issue was then to study the convergence of  these series
which, in most cases, appeared to be divergent. The reason for the lack of
convergence was due to disturbances caused by the so-called small denominators
(or small divisors). In fact, the construction of  the series implies that within
the coefficients of  the terms there are denominators that can be zero or
dangerously close to zero, causing the coefficients to tend toward infinity and,
therefore, making the series itself  diverge.

These denominators take the form of  linear combinations of  the
frequencies of  non-perturbed motions with integers, of  the type:

where ωi , i = 1 . . . n are real numbers representing the frequencies of  the
planets, and m1, . . . , mn are integers.

If  the ratios of  the frequencies are a rational numbers, these denomi-
nators can cancel out. This situation is nowadays described as exact resonance
between the planets: after a certain number of  periods, the initial configura-
tion of  their mutual positions repeats itself.

In the vicinity of  a resonance – i.e. when the frequencies are close to
being commensurable – the small divisors remain very close to zero and, in
general, it is not possible to predict the dynamic effects that follow. The
repetition of  near-identical configurations amplifies the perturbation effect
and, in many cases, causes the instability of  the resonant orbit.

An example: the frequencies of  the motions of  Saturn and
Jupiter. In their motion of  revolution around the Sun, Saturn
and Jupiter move with frequencies equal, respectively, to approx-
imately

The two frequencies are almost commensurable, since
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Now, the series that describes the motion of  the two planets,
derived from perturbation theory, is of  the type

and, therefore, we find in the denominator a quantity that, for
infinitely interger values of  n and m, is close to 0.

Difficulties due to small denominators accompanied the theories of
celestial mechanics throughout the first half  of  the 20th century. We will see
in Chapter 3 that Kolmogorov overcame this problem by adopting a neces-
sary condition on the ratio between the frequencies of  the motions.

1.1.1 “Properties holding for almost all the initial states of  the system”:
Henri Poincaré (1854-1912) recurrence theorem (1890) towards a
metrical approach to dynamical systems

One hundred years before the International Congress of  Mathemati-
cians in Amsterdam in 1954, Jules henri poincaré was born in Nancy. A pi-
oneer in the use of  algebraic geometry and topology in the study of  celestial
mechanics, his work contributed significantly to the study of  the three-body
problem by introducing a new approach known as the “qualitative study of
differential equations.” The term qualitative refers to the study of  the behavior
of  the solutions of  a system of  differential equations, obtained through a
geometric approach, without requiring an explicit expression for those solu-
tions. This proved especially necessary in celestial mechanics, where, as we
have seen, it was not possible to determine the solutions of  the system ex-
plicitly.

This innovation finds its fullest expression in the three volumes Les
méthodes nouvelles de la mécanique céleste (poincaré 1892-99), though the origins
of  his research in this field date back more than ten years earlier, to his
“Mémoire sur les courbes définies par une équation différentielle (I)”
(poincaré 1881), in which the author himself  introduced the adjective
qualitative in reference to the geometric study of  the curve defined by the
function under consideration:
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«Une théorie complète des fonctions définies par les équations différentielles serait
d’une grande utilité dans un grand nombre de questions de Mathématiques pures
ou de Mécanique. Malheureusement, il est évident que dans la grande généralité des
cas qui se présentent on ne peut intégrer ces équations à l’aide des fonctions déjà
connues, par exemple à l’aide des fonctions définies par les quadratures. Si l’on voulait
donc se restreindre aux cas que l’on peut étudier avec des intégrales définies ou
indéfinies, le champ de nos recherches serait singulièrement diminué, et l’immense
majorité des questions qui se présentent dans les applications demeureraient
insolubles.
Il est donc nécessaire d’étudier les fonctions définies par des équations différentielles
en elles-mêmes et sans chercher à les ramener à des fonctions plus simples [...].
Rechercher quelles sont les propriétés des équations différentielles est donc une
question du plus haut intérèt. On a déjà fait un premier pas dans cette voie en
étudiant la fonction proposée dans le voisinage d’un des points du plan. Il s’agit
aujourd’hui d’aller plus loin et d’étudier celte fonction dans toute l’étendue du plan.
Dans cette recherche, notre point de départ sera évidemment ce que l’on sait déjà
de la fonction étudiée dans une certaine région du plan. L’étude complète d’une
fonction comprend deux parties:
1° partie qualitative (pour ainsi dire), ou étude géométrique de la courbe définie par
la fonction;
2° partie quantitative, ou calcul numérique des valeurs de la fonction.» (poincaré
1881, pp. 375-376).

his interest in the theory of  differential equations accompanied much
of  his scientific output, from his first article in 1878 to his last in 1912.
however, from 1885 onward, it is evident that his focus shifted increasingly
toward celestial mechanics. Indeed, the articles he published from that year
on concerning differential equations were mostly related to problems in
celestial mechanics. In 1885, he published an article entitled “Sur l’équilibre
d’une masse fluide animée d’un mouvement de rotation” in volume 7 of  the
journal «Acta Mathematica». In the same volume, on the first six pages, there
appears a notice written by the publisher Gösta Mittag-Leffler, Mittheilung,
einen von König Oscar II gestifteten mathematischen Preis betreffend (“Communication
concerning a mathematical prize donated by King Oscar II,” Mittag-Leffler
1885), announcing the prize sponsored by King Oscar II, for which poincaré
would compete and ultimately win with a submission on the first of  the
proposed topics:
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«étant donné un système d’un nombre quelconque de points matériels qui s’attirent
mutuellement suivant la loi de NEWTON, on propose, sous la supposition qu’un
choc de deux points n’ait jamais lieu, de représenter les coordonnées de chaque point
sous forme de séries procédant suivant quelques fonctions connues du temps et qui
convergent uniformément pour toute valeur réelle de la variable. Ce problème dont
la solution étendra considérablement nos connaissances par rapport au système du
monde, paraît pouvoir être résolu à l’aide des moyens analytiques que nous avons
actuellement à notre disposition; on peut le supposer du mémoires, car LEJEUNE-
DIRIChLET a communiqué peu de temps avant sa mort à un géomètre de ses amis
qu’il avait découvert une méthode pour l’intégration des équations différentielles de
la mécanique, et qu’en appliquant cette méthode il était parvenu à démontrer d’une
manière absolument rigoureuse la stabilité de notre système planétaire. Malheureu-
sement nous ne connaissons rien sur cette méthode, si ce n’est que la théorie des
oscillations infiniment petites parait avoir servi de point de départ pour sa décou-
verte. On peut pourtant supposer presque avec certitude que cette méthode était
basée non point sur des calculs longs et compliqués, mais sur le développement
d’une idée fondamentale et simple, qu’on peut avec raison espérer de retrouver par
un travail persévérant et approfondi. Dans le cas pourtant où le problème proposé
ne parviendrait pas à être résolu pour l’époque du concours, on pourrait décerner le
prix pour un travail, dans lequel quelque autre problème de la mécanique serait traité
de la manière indiquée et résolu complètement.»

This represented only the first of  the four problems proposed in the
competition, formulated by Karl Weierstrass (1815-1897), a member of  the
prize commission along with Charles hermite (1822-1901). In fact, the
question reflected Weierstrass’s strong interest in the n-body problem. This
topic is further explored in (Barrow-Green 1997), where we read in a footnote
on page 70:

«In a letter dated 15 August 1878, Weierstrass told Kovalevskaya that he had con-
structed a formal series expansion for solutions to the problem but was unable to
prove convergence, and in 1880/81 he gave a seminar on the problems of  pertur-
bation theory in astronomy. Despite Weierstrass’ own difficulties with the problem,
certain remarks made by Dirichlet in 1858 had led him to believe that a complete
solution was possible, and hence his choice of  the problem as one of  the competi-
tion questions. Weierstrass’ interest in the problem is chronicled in (Mittag-Leffler
1912).» (Barrow-Green 1997, p. 70, footnote).
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Weierstrass here refers to the Lindstedt series, discussed in the previous
paragraph.

poincaré won the prize in January 1889, although the result he
presented did not fully meet the requirements of  the question posed.5

In fact, he focused solely on the three-body problem and, instead of
demonstrating that the Lindstedt series converges, his research led him to
hypothesize – without being able to prove it – that they diverged. he was
asked to prepare his memoir for prompt publication in Acta Mathematica.
Thus, in volume 13 of  the 1890 «Acta Mathematica», “Sur le problème des
trois corps et les équations de la dynamique” was published. This article
presented the main ideas of  poincaré and came to be considered the
foundation of  his later monumental work Les méthodes nouvelles mécanique céleste,
which appeared in three volumes over the seven years from 1892 to 1899. It
is in the Mémoire (poincaré 1890) that we find the first original formulation
of  the so-called “poincaré 1954 speech.6

The theorem, in its original formulation, is stated as follows:

Theorem 1 (Poincaré Recurrence). Supposons que le point p
reste à distance finie, et que le volume dx1 dx2 dx3 soit un invariant
intégral7; si l’on considère une region r0 quelconque, quelque
petite que soit cette région, il y aura des trajectoires qui la
traverseront une infinité de fois.8

The theorem, with its characteristic geometric nature, would become
the forerunner of  Birkhoff ’s studies and the birth of  ergodic theory (Sinai
1976, Barrow-Green 1993, Chenciner 2012), as Kolmogorov asserted in his
Amsterdam lecture:

5 See (Barrow-Green 1997), (Diacu and holmes 1996), and (Dumas 2014) for full details.
6 As noted by (Barrow-Green 1997, p. 113), the original formulation of  the theorem already
appears in the unpublished 1889 draft memoir Sur le problème des trois corps et les équations de la
dynamique, avec des notes par l’auteur – mémoire couronné du prix de S. M. le Roi Oscar II. Although
printed in 1889, it was never formally published.
7 This means that the volume of the region is conserved.
8 English translation: Suppose that the point P remains at a finite distance, and that the volume
dx1 dx2 dx3 is an integral invariant; if we consider any region r0 , however small this region may
be, there will be trajectories which will cross it an infinite number of times.



«After the work of  h. poincaré, the fundamental role of  topology for this range of
problems became clear. On the other hand, the poincaré-Carathéodory recurrence
theorem initiated the “metrical” theory of  dynamical systems in the sense of  the
study of  properties of  motions holding for “almost all” initial states of  the system.
This gave rise to the “ergodic theory”, which was generalized in different ways and
became an independent center of  attraction and a point of  interlacing for methods
and problems of  various most recent branches of  mathematics (abstract measure
theory, the theory of  groups of  linear operators in hilbert and other infinite-dimen-
sional spaces, the theory of  random processes, etc.). At the preceding International
Congress in 1950 the extensive paper by Kakutani was devoted to general problems
of  ergodic theory.» (Kolmogorov 1957, pp. 355-356).

This theorem, along with the theorem of  non-existence of  uniform
integrals for the three-body problem and many other results developed in the
memoirs, finds a more considered elaboration in the three volumes of  Les
Méthodes nouvelles de la mécanique céleste (poincaré 1892-99).

The introduction to the first volume of  the work is a remarkable historical
document: poincaré traces the state of  the art in celestial mechanics and describes
the developments to which he contributed in a clear and concise manner.

I quote here a few passages that are particularly significant for the
historical reconstruction of  the evolution of  dynamics:

«Le problème des trois corps a une telle importance pour l’Astronomie, et il est en
même temps si difficile, que tous les efforts des géomètres ont été depuis longtemps
dirigés de ce côté. Une intégration complète et rigoureuse étant manifestement
impossible, c’est aux procédés d’approximation que l’on a dû faire appel. [...] Le but
final de la Mécanique céleste est de résoudre cette grande question de savoir si la loi
de Newton explique à elle seule tous les phénomènes astronomiques; le seul moyen
d’y parvenir est de faire des observations aussi précises que possible et de les
comparer ensuite aux résultats du calcul. Ce calcul ne peut être qu’approximatif  et
il ne servirait à rien, d’ailleurs, de calculer plus de décimales que les observations
n’en peuvent faire connaître. Il est donc inutile de demander au calcul plus de
précision qu’aux observations; mais on ne doit pas non plus lui en demander moins.
Aussi l’approximation dont nous pouvons nous contenter aujourd’hui sera-t-elle
insuffisante dans quelques siècles.
[...] Cette époque, où l’on sera obligé de renoncer aux méthodes anciennes, est sans
doute encore très éloignée; mais le théoricien est obligé de la devancer, puisque son
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œuvre doit précéder, et souvent d’un grand nombre d’années, celle du calculateur
numérique.
[...] Ces méthodes, qui consistent à développer les coordonnées des astres suivant
les puissances des masses, ont en effet un caractère commun oui s’oppose à leur
emploi pour le calcul des éphémérides à longue
échéance. Les séries obtenues contiennent des termes dits séculaires, où le temps
sort des signes sinus et cosinus, et il en résulte que leur convergence pourrait devenir
douteuse si l’on donnait à ce temps t une grande valeur.
La présence de ces termes séculaires ne tient pas à la nature du problème, mais
seulement à la méthode employée.
[...] Mais le savant qui a rendu à cette branche de l’Astronomie les services les plus
éminents est sans contredit M. Gyldén9. Son œuvre touche à toutes les parties de la
Mécanique céleste, et il utilise avec habileté toutes les ressources de l’Analyse mo-
derne. M. Gyldén est parvenu à faire disparaître entièrement de ses développements
tous les termes séculaires qui avaient tant gêné ses devanciers. D’autre part, M. Linds-
tedt a proposé une autre méthode beaucoup plus simple que celle de M. Gyldén,
mais d’une portée moindre, puisqu’elle cesse d’être applicable quand on se trouve
en présence de ces termes, que M. Gyldén appelle critiques.
[...] Il m’a semblé, d’autre part, que mes résultats me permettaient de réunir dans une sorte
de synthèse la plupart des méthodes nouvelles récemment proposées, et c’est ce qui m’a
déterminé à entreprendre le présent Ouvrage.»10 (poincaré 1892-99, vol. I, pp. 1-5).

9 Johan August hugo Gyldén (1841-1896) was a Finnish astronomer primarily known for
his work in celestial mechanics. Further details will be provided in §1.4.2.
10 The Three-Body problem is of  such importance in astronomy, and is at the same time so
difficult, that all efforts of  geometers have long been directed toward it. A complete and
rigorous integration being manifestly impossible, we must turn to the processes of
approximation. 
[...] The final goal of  Celestial Mechanics is to resolve the great problem of  determining if
Newton’s law alone explains all astronomical phenomena. The only means of  deciding is to
make the most precise observations, and then compare them to calculated results. This
calculation can only be approximate, and it would be pointless to calculate to more decimals
than observation can give us. It is therefore useless to ask more precision from calculation
than from observation, but neither should we ask less. Furthermore, the approximation with
which we can content ourselves today will be insufficient in several centuries. 
[...] This era, when we will be obliged to relinquish old methods, is without doubt still quite
distant. however, the theorist must anticipate it, because his work must precede, and often
by a great number of  years, that of  the numerical calculator.
[...] These methods, which consist of  developing the coordinates of  the heavenly bodies in
terms of  the powers of  the masses, have, in fact, a common character which is opposed to
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The first volume dealt with periodic solutions and the non-existence
of  uniform integrals, as well as asymptotic solutions to the three-body
problem, while the second volume focused on the multiple perturbation series
methods developed up to that time by Newcomb, Gyldén, Lindstedt, and
Bohlin, and their applications to the three-body problem.

Finally, the last volume, which appeared six years after the second,
delved into integral invariants, periodic solutions of  the second kind, and
doubly asymptotic solutions, the latter introduced by poincaré himself  in the
prize memoir.

The difficulties highlighted by the various methods listed by poincaré
regarding the convergence of  power series are characteristic not only of
problems in celestial mechanics, but of  all problems “close” to integrable
problems, with which perturbation theory deals.

For this reason, poincaré defined, on page 32 of  Volume 1, what he
would call the  Problème général de la Dynamique. Let us see what this entails,
using the same nomenclature used by the French mathematician.

The general problem of  dynamics. Let us consider the study
of  the motion of  q material bodies, free to move in space; each
of  them is characterized by a mass m1, . . . , mq, by the three spatial

their use for long-term calculation of  the ephemerides.
The series obtained contain terms called secular, where time occurs outside the sine and
cosine terms, with the result that their convergence would become doubtful if  we were to
give this time t a large value.
The presence of  these secular terms is not basic to the nature of  the problem, but only to
the method used. 
[...] however, the scientist who has given this branch of  astronomy the most eminent service
is without question Gylden. his work touches all parts of  Celestial Mechanics, and it uses
with ease all resources of  modern analysis. Gylden has succeeded in eliminating entirely from
his development all secular terms, which so troubled his predecessors.
On the other hand, Lindstedt has proposed a method much simpler than that of  Gylden,
but of  less power, because it is no longer applicable when we are confronted with those
terms which Gylden calls critical.
[...] On the other hand, it has appeared to me that my results permitted me to unite, in a sort
of  synthesis, the greater part of  the new methods recently proposed, and this is what made
me decide to undertake the present work. (English translation by NASA, Dover Publications, New
York, 1957).
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coordinates: (x1, x2, x3) for the first body, (x4, x5, x6) for the
second body, . . . , (x3q-2, x3q-1, x3q) for the last body and by the
three spatial coordinates of  the momentum (y1, y2, y3) for the first
body, (y4, y5, y6) for the second body, . . . , (y3q-2, y3q-1, y3q) for the
last body, with respect to a fixed reference system.
Since Newton’s formulation, we have seen that the equations of
motion correspond to a system of  n second-order differential
equations.
With the Lagrangian and hamiltonian formalisms the equations
take a new form, becoming a system of  first-order differential
equations in a space of  2n variables (double, with respect to the
first), in which the coordinates of  the points are identified by
their positions and their momenta.a

A force acts on each body as a result of  the gravitational inter-
actions among the masses. This force is vectorial, with spatial
components along the three directions: (F1, F2, F3) for the first
body, (F4 , F5, F6) for the second body, . . . , (F3q-2, F3q-1, F3q) for
the last body.
If  the system is conservative, there exists a function V, called
the force functionb such that

We can also define the live half  forcec, which has the form:

Thus, the equation of  live forces can be written as: 

or more generally,

and the equations of  motion are described by:



Now, proceeding analogously to formalize the three-body
problem, poincaré observed that, since two of  the bodies have
much smaller masses than the third, their masses can be written
as the product of  a small parameter µ and a finite value (e.g., m1

= µα1 and m2 = µα2, with α1 , α2 finite).

It may then be advantageous to develop F in powers of  µ:

with F0 independent of  any variable yi . Whatever the value of  µ,
F is a periodic function of  period 2π with respect to the variables
yi .
Thus poincaré defines the general problem of  dynamics as the study
of  the canonical equations (4), under the assumption that the
function F can be expanded in a power series as in (5) and
supposing that the function F0 depends only on the variables x1,
x2 , . . . and that the successive Fi being periodic of  period 2π
with respect to the variables yi .

a In modern terms, the space formed by the pairs (x, y), where x is the position
vector and y is the momentum vector, constitutes a differential manifold
known as phase space.
b Today it is referred to as potential energy.
c Today it is referred to as kinetic energy.

The general problem of  dynamics represents the form taken by the
new methods presented by poincaré in his classic three-volume work.

poincaré’s own description of  his contributions, in his “Analyse des
travaux scientifiques de henri poincaré faite par lui-même”, published in 1921
in volume 38 of  «Acta Mathematica» (poincaré 1921), deserves close
attention. In the 133 pages, all his publications are first listed and then, in
what he called the “Résumé analytique,” seven research areas are considered:
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«J’ai classé les travaux que j’ai à résumer sous les sept rubriques suivantes:
1°. Equations Différentielles.
2°. Théorie générale des Fonctions.
3°. Questions diverses de Mathématiques pures (Algèbre, Arithmétique,
Théorie des Groupes, Analysis Situs).
4°. Mécanique Céleste.
5°. physique Mathématique.
6°. philosophie des Sciences.
7°. Enseignement, vulgarisation, divers (Bibliographie, rapports divers).»
(poincaré 1921, p. 36).

The section on celestial mechanics is divided into very short and
discursive subsections. The first is entitled “Généralités sur les équations de
la Dynamique et de la Mécanique Céleste”:

«Les équations de la Dynamique présentent des propriétés remarquables qui ont été
mises en évidence par JACOBI dans ses Vorlesungen11.
Quelles sont les conséquences plus ou moins immédiates de ces propriétés? Quel
partie peut-on en tirer pour la mise en équation des problèmes de Dynamique et en
particulier des problèmes de Mécanique Céleste? Telle est la première question dont
je veux parler ici.
J’ai été amené à passer en revue les principales propriétés des équations canoniques.
Les propriétés sont classiques; et je n’ai eu qu’a perfetionner certains détails; en me
servant surtout du caractère bien connu qui permet de reconnaître si un changement
de variables conserve la forme canonique des équations.
Ce genre de transformations facilite la mise en équation du problème des trois corps;
c’est ce que j’ai montré. On sait que dans le procédé classique on rapporte toutes les
planètes à des axes mobiles passant par le Soleil. L’inconvénient est que la fonction
perturbatrice n’est pas la même pour toutes les planètes. Un autre procédé consiste
à rapporter chaque planète au centre de gravité du système formé par le Soleil et
toutes les planètes inférieures à celle que l’on considère. L’inconvénient est évité,
mais la fonction perturbatrice est un peu plus compliquée. J’ai proposé un troisième
procédé, dans lequel les coordonnées de chaque planète sont rap- portées au Soleil,
et sa vitesse à des axes fixes.

11 Vorlesungen über Dynamik (Lectures on Dynamics) by Karl Gustav Jakob Jacobi (1804-1851),
first published in 1866.
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Malgré les travaux dont les équations canoniques ont été l’objet depuis JACOBI,
toutes leurs propriétés ne sont pas connues, ou plutôt on n’a pas insisté sur toutes
les formes que peuvent revêtir ces propriétés et qu’il peut être utile de connaître. Si
par exemple on étudie les équations aux variations des équations de la Dynamique,
c’est à dire les équations qui définissent une solution infiniment peu différente d’une
solution donnée, on rencontre des propositions importantes sur lesquelles j’ai attiré
l’attention.
D’un autre côté, j’ai été amené à introduire une notion nouvelle, celle des invariants
intégraux. Ce sont certaines intégrales définies simples ou multiples qui demeurent
constantes, quand le champ d’intégration varie conformément à une certaine loi
définie par une équation différentielle. Si par exemple on envisage les équations
différentielles au mouvement d’un fluide incompressible, le volume est un invariant
intégral.
Les équations canoniques de la Dynamique possèdent des invariants intégraux
remarquables et l’existence de ces invariants jette une grande lumière sur leurs
propriétés.
pour en finir avec ces généralités sur les équations de la Dynamique et le problème
des 3 corps, je signalerai un dernier travail. On sait que BRUNS a démontré que le
problème des 3 corps ne saurait admettre d’autre intégrale algébrique que les
intégrales classiques. Malheureusement dans sa démonstration subsistait une lacune
grave et particulièrement délicate à combler. J’ai été assez heureux pour mettre la
belle et ingénieuse démonstration de M. BRUNS à l’abri de toute objection.» (poincaré
1921, p. 102).

The proof  to which he refers in the last sentence is found in Chapter
5 of  the first volume of  poincaré (1892-99), on page 233. It is now known
as “Non-existence des intégrales uniformes” (Fermi 1923b; Benettin et al.
1985).

To this theorem must be added the discovery of  certain complex
solutions – called by poincaré asymptotic and doubly asymptotic (i.e., in infinite
past and future time) – as well as of  trajectories, called homoclinic, so intricate
that they cannot be drawn. This marked the beginning of  a very delicate
moment in the history of  celestial mechanics: once it became clear that the
method of  direct integration could no longer be pursued and that some were
anything but simple, the study of  the qualitative and global aspects of  motion
became the new paradigm.

Moreover, the possibility that the mathematical description of  the
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system might be inherently unstable began to gain ground, gradually creating
an ever-widening gap between astronomers, with their direct measurements,
and mathematicians, with their increasingly chaotic theories of  the Solar
System.

1.1.2 Ferrying classical mechanics into the 20th Century: Edmund
Whittaker’s (1873-1956) A treatise on the analytical dynamics of
particles and rigid bodies (1904)

In the late 19th century, celestial mechanics and the problem of  the
stability of  the Solar System were at the center of  interest for the international
mathematical community, thanks in part to poincaré’s revolutionary new
methods. The question posed by the French mathematician himself  – de savoir
si la loi de Newton explique à elle seule tous les phénomènes astronomiques – remained
open. Although poincaré’s work was widely recognized during his lifetime,
many aspects of  it remained enigmatic afterwar12. This was due mainly to two
factors: on the one hand, poincaré did not make an effort to condense, refine,
or carefully verify his work (Dumas 2014); on the other hand, mathematics
in the 20th century underwent a restructuring of  its conceptual framework.
previous theories were not discarded, but rather absorbed into new
paradigms, rendering them almost unrecognizable from the perspectives of
the original authors. The field of  classical mechanics was not spared from
this restructuring. On this subject, Severino Collier Coutinho remarks in a
2014 paper:

«So dramatic have been the changes that mechanics has undergone in the twentieth
century that the style and even the contents of  most books on dynamics written
before the 1930s look hopelessly dated to present-day readers. But there are
exceptions.» (Coutinho 2014, p. 356).

Regarding the “exceptions”, Coutinho refers to the work of  the British
mathematician of  Scottish origin, born in 1873, when poincaré was just 18
years old: Edmund Taylor Whittaker (1873-1956). 

In the year of  publication of  the last of  the three volumes of  Les

12 (Dumas 2014, p. 43).
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méthodes nouvelles, Whittaker was in Cambridge, England, when the British
Association asked him to prepare a report on the state of  research on the
three-body problem. The English mathematician and astronomer William
hunter McCrea (1904-1999) reported the notice in (McCrea 1957):

«Whittaker’s interests in dynamics and optics were closely linked with an interest in
their astronomical applications. As early as 1898 the Council of  the British
Association resolved “that Mr. E. T. Whittaker be requested to draw up a report on
the planetary theory”. Besides, in those days an interest in astronomy was more
general amongst mathematicians than it has since become, and most professional
mathematicians in the country joined the Royal Astronomical Society.» (McCrea
1957, p. 236).

The following year, Whittaker wrote Report on the Progress of  the Solution
of  the Problem of  Three Bodies, a report covering the last thirty years of  research,
up to and including poincaré’s very recent studies:

«The Report attempts to trace the development of  the subject in the last thirty years,
1868-98; this period opens with the time when the last volume of  Delaunay’s “Lunar
Theory” was newly published; it closes with the issue of  the last volume of
poincaré’s “New Methods in Celestial Mechanics”. Between the two books lies the
development of  the new dynamical astronomy.
The work will be distributed under the following seven headings:
§I. The differential equations of  the problem.
§II. Certain particular solutions of  simple character.
§III. Memoirs of  1868-89 on general and particular solutions of  the differential
equations, and their expression by means of  infinite series (excluding Gyldén’s
theory).
§IV. Memoirs of  1868-89 on the absence of  terms of  certain classes from the infinite
series which represent the solution.
§ V. Gyldén’s theory of  absolute orbits.
§ VI. progress in 1890-98 of  the theories of  §§ III and IV
§ VII. The impossibility of  certain kinds of  integrals.» (Whittaker 1899, p. 122).

Section VI is dedicated to the developments by poincaré in Les Méthodes
nouvelles de la mécanique céleste. It provides a very accurate description of  some
of  the aspects addressed by the French mathematician (such as periodic and
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asymptotic solutions and invariant integrals); he highlights the importance of
certain results, such as the recurrence theorem (Whittaker 1899, p. 145), and
reports the original formulation of  the “fundamental problem of  dynamics”
(Whittaker 1899, p. 147).

Whittaker held the position of  Secretary of  the Royal Astronomical
Society from 1901 to 1906, became Astronomer Royal of  Ireland, moved to
Dunsink Observatory – the same observatory where hamilton had worked
– and was appointed professor of  Astronomy at Dublin University in 1906.
Five years after his report on the problem of  three bodies, he published the
first edition of  his monumental work on analytical mechanics, entitled A
Treatise on the Analytical Dynamics of  Particles and Rigid Bodies; with an Introduction
to the Problem of  Three Bodies.

McCrea emphasizes the importance of  Whittaker’s figure in British
mathematics, especially with reference to his work in the field of  dynamics:

«The name of  Sir Edmund Whittaker will always hold a unique place in the history
of  British mathematics. It may reasonably be claimed that no single individual in
this century or the last had so far-reaching an influence upon its progress. If  such a
claim comes as a surprise to some present-day readers, it is probably because we are
apt to forget the part that Whittaker played personally in bringing about so many of
the developments that we now take for granted.
British nineteenth-century mathematics was deplorably insular, apart from the work
of  a very few of  its most distinguished men in certain particular fields. Whittaker,
more than anyone else, brought about the transformation to something that was
more abreast of  developments elsewhere while, happily, still bearing characteristic
features of  its own.
[...] he was the first to make available in this country a comprehensive account of
the special functions of  analysis. Further, what Forsyth13 and Whittaker did for
analysis, Whittaker alone did for applied mathematics by his Analytical Dynamics.
[...] Moreover, with an inspired appreciation of  what is in the best sense useful in
mathematics, he has included in his books much that was found to be needed in the
development of  quantum mechanics and wave-mechanics more than twenty years
afterwards. The part that British workers in particular were thus enabled to contribute

13 Andrew Russell Forsyth (1858-1942) was a British mathematician, and Whittaker was his
only (at least officially recorded) student. Forsyth authored significant works on analysis that
played a key role in introducing foreign mathematical research to Britain.
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to this development owes a debt to Whittaker which seems scarcely to have been
sufficiently acknowledged.» (McCrea 1957, p. 234).

Whittaker’s Analytical Mechanics was the first book to provide a
systematic account in English of  the theory arising from hamilton’s equations
(McCrea 1957). In a recent paper, Coutinho traced the history and wide spatial
and temporal diffusion of  the essay. he attempted to study the reasons why
this work has remained so enduring, even at times when many contemporary
works were shelved and deemed obsolete. published in 1904, it went through
four editions, was translated into German and Russian, and is still in print
today:14

«What were the qualities that allowed Whittaker to write a book [...] that remains
useful to mathematicians working in several different areas, more than one hundred
years after it was written? [...] this was in good measure due to Whittaker’s great
knowledge of  the literature and to his ability to organize this knowledge in a
systematic way. Moreover, his reading was not limited to contemporaneous works,
it also encompassed the classics of  the 18th and 19th centuries. [...] It seems to me
that the success of  Whittaker ’s books owes much to the fact that he was one of
that rare breed, a scientist who is also a scholar, of  which D’Arcy Thompson is
probably the best known representative. people whose research may not have been
exceptional, but whose great knowledge of  the literature, including historical works,
allowed them to “crystallize” in their books a vision of  a whole subject that would
greatly influence later generations.» (Coutinho 2014, p. 403).

1.1.3 The Scandinavian research tradition: Die Mechanik des Himmels
(1902-07) by Carl Ludvig Charlier (1862-1934)

For almost two centuries, until 1809, the Finnish-Swedish union was
not only geographical and political, but also manifested itself  in the links be-
tween the universities and academies of  the two countries. Astronomy and
celestial mechanics represented privileged fields of  study and, from the sec-
ond half  of  the eighteenth century, with the construction of  the Stockholm,

14 An edition dated 27 December 2022 by Cambridge University press is currently available
for sale.
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Uppsala, and Lund observatories, research intensified.15 Given their geo-
graphical position, the two countries could count on collaborations with Ger-
many to the west and, subsequently, with Russia to the east. Furthermore,
after Sweden’s defeat against Russia in 1809 and the cession of  Finland to
Russia – becoming the Grand Duchy of  Finland – new opportunities opened
up for Finnish astronomers and celestial mechanicians to collaborate with
their Russian neighbours. In fact, while in the eighteenth century most of  the
studies were under Swedish dominion, the situation of  astronomical research
changed along with the shifting political balance. Between 1831 and 1834, on
the Ulrikasborg hill (Observatory hill park) in helsinki, the architect Carl
Ludvig Engel (1778-1840), in collaboration with professor Friedrich Wilhelm
Argelander (1799-1875), completed the construction of  one of  the most
modern observatories of  that period. The helsinki Observatory ended up
influencing the next major observatory project in the Russian Empire, namely
the main imperial observatory at nearby pulkovo, just south of  St. petersburg. 

The lively community of  Finnish astronomers, supported by their
observatory and newly formed connections, enjoyed great opportunities to
receive an excellent education at pulkovo – more so than they would have
under continued Swedish rule. Representative of  this scientific fervour was
Karl Frithiof  Sundman (1873-1949), a Finnish mathematician and astronomer
who, after graduating in 1897, went to the pulkovo Observatory to continue
his research in astronomy. he demonstrated the existence of  a solution in
convergent infinite series to the three-body problem, using analytical methods
for the regularization of  motion – i.e., the elimination of  singularities through
a suitable series of  transformations.

On the other hand, from neighbouring Sweden, the main figures were
Anders Lindstedt, Johan August hugo Gyldén – names already encountered
in the previous paragraphs – and Carl Ludwig Charlier.

Charlier (1862-1934) defended his thesis Untersuchung über die allgemeinen
Jupiter-Störungen des Planeten Thetis16 in 1887, as a student of  Gyldén, at Uppsala
University. Thanks to the quality of  his work, he was immediately appointed
professor at the same university.17 In the autumn of  1898, he gave lectures
on general celestial mechanics, which contained – as he himself  revealed in

15 (holmberg 1999).
16 Investigation of  the general perturbations by Jupiter on the planet Thetis.
17 (Wicksell 1935).
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the preface of  the first volume (Charlier 1902-07) – the main topics of  his
two volumes Die Mechanik des Himmels, published in 1902 and 1907.

In the preface on page iii, he declares the main intent of  the texts:

«Als Ziel habe ich mir gesteckt, eine möglichst einheitticlie Darstellung des jetzigen
Standpunkts der Untersuch nugen über die Mechanik des himmels, insofern sieb
dieselbe mit der Bewegung von Massenpunkteu beschäftigt, zu geben. Es ist dabei
mein hauptstreben gewesen, die astronomisch wichtigen Resultate hervorzuheben,
indem ich gleichzeitig die mathematische Eleganz und Schärfe, welche besonders
die neueren Untersuchungen auf  diesem Gebiete18». (Charlier 1902-7, vol. 1, p. III).

Like and contemporary with Whittaker’s works, the volumes represent
a systematization of  motion – that is, the elimination of  singularities through
a suitable series of  transformations.19

And it is Whittaker who cites the results of  the Swedish mathematician
several times, already in his 1899 report for the British Association:

«poincaré’s paper gave a fresh stimulus to the investigation of  periodic solutions. In
1890 v. haerdtl20 calculated numerically two cases of  the restricted problem of  three
bodies. Charlier in 1892 discussed the same cases by means of  expansions
proceeding in ascending powers of  the time, and the same author in 1893 found a
set of  periodic solutions of  the problem of  three bodies in a plane, whose expansion
involves four arbitrary constants. [...] Brown21 in 1897 discussed the properties of
the general solution in trigonometric series of  the problem of  three bodies, by
supposing it to have been derived by integrating the hamilton-Jacobi equation.
[...] Researches relating to the convergence of  the trigonometric series of  dynamical
astronomy were published in 1896 by Charlier and in 1898 by poincaré. The former,

18 English translation: «My goal has been to provide as uniform a presentation as possible
of  the current point of  view in investigations of  celestial mechanics, regarding the motion
of  mass points. My main objective has been to emphasize the astronomically significant
results, while also aiming to convey the mathematical elegance and precision made possible
particularly by the most recent research in this field».
19 (Sundman 1907, 1910, 1913).
20 Eduard Freiherr von haerdtl (1861-1897) was an Austrian astronomer, who became the
first professor of  astronomy at the University of  Innsbruck in 1892.
21 Ernest William Brown (1866-1938) was an English mathematician and astronomer, known
in the field of  celestial mechanics for his studies on lunar movements.
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by expanding in descending powers of  m the coefficient of  the mth term in such a
series, arrived at the conclusion that the convergence can be augmented by dividing
the function expressed into two parts, one of  which depends on the first terms in
these expansions of  the coefficients.» (Whittaker 1899, pp. 151, 156-157).

The question concerning the singularities of  motion in the three-body
problem also found fertile ground in the Scandinavian scientific environment,
which played a leading role in the history and evolution of  astronomy and
celestial mechanics during those years.

In the last decade of  the 19th century, the theory of  singularities in the
three-body problem was developed by the French mathematician paul
prudent painlevé (1863-1933).

Singularities are closely related to collisions between bodies, since each
collision corresponds to a singularity in the differential equations of  the
problem. Therefore, the goal was to eliminate singularities in order to study
the motion of  the system even after a possible collision. Furthermore, the
question arose as to whether singularities result only from collisions or
whether other phenomena might also give rise to them.

In 1896, painlevé published “Sur les singularités des équations de la
Dynamique” (painlevé 1896), an in-depth study in which he demonstrated
that the only possible singularities were those due to collisions.

1.1.4 Classical and modern mechanics: Jean-François Chazy (1882-
1955) and the capture in the Three-Body problem

The 20th century ushered in the advent of  the theories of  relativity
and quantum mechanics, and celestial mechanics – like other fields of  classical
mechanics – was significantly affected by the ongoing restructuring of  the
sciences. Classical mechanics, a foundational pillar for 19th-century mathe-
maticians and a source of  modern European mathematical development, be-
came increasingly marginalized – though not without some notable
exceptions.

Upon closer examination, one can identify two fundamental factors
contributing to the transformation that occurred at the beginning of  the last
century. On the one hand, in the words of  Dumas (Dumas 2014, p. 7), “not
surprisingly, in that period, physicists abandoned classical mechanics to the
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few hardy mathematicians who remained interested in it. The physicists
returned with wondrous stories of  their exploits in quantum mechanics,
relativity, and nuclear physics.”

On the other hand, it was precisely the formulation of  the principles
of  the theory of  relativity that cast doubt on the validity of  Newton’s laws
and Galilean transformations – transformations that relate the coordinates
describing the same phenomenon from two distinct reference frames.
Classical theories began to appear obsolete, and celestial mechanics perhaps
needed to be revised in light of  the new relativistic ideas.

Although there was widespread belief  in a clear break between classical
and modern theories – or in the outright replacement of  the older paradigm
by the new one – what actually occurred among the few mathematicians who
continued to study celestial mechanics was a coexistence of  the two. There
are numerous examples of  scholars who engaged with both celestial
mechanics and relativity.

poincaré himself  addressed questions concerning the simultaneity of
time and Lorentz transformations – which replaced the Galilean ones – in
poincaré (1900), even before Einstein formulated the theory of  relativity in
1905. The Italian mathematician Tullio Levi-Civita (1873-1941) and the
French mathematician and astronomer Jean-François Chazy (1882-1955) are
among those who made contributions in both fields.

After being mobilized into the French army in 1914 and assigned to
the sound reconnaissance laboratory established at the école Normale
Supérieure in paris, Chazy did not return to his research at the University of
Lille until 1919. he published extensively on the three-body problem – for
example, (Chazy 1922, 1924, 1929) – and also worked on the subject of
relativity and its application to celestial mechanics. he published the essay La
théorie de la relativité et la mécanique céleste (Chazy 1928-1930) in two volumes:

«On trouve, dans les deux livres de Jean Chazy, toutes les notions nécessaires de
géométrie différentielle générale, les méthodes générales de calculs et de formation
des équations d’Einstein, l’étude des questions classiques.
Nous insisterons sur le problème du périhélie de Mercure qui avait été l’objet, nous
l’avons vu, d’une discussion approfondie par Jean Chazy.» (Darmois 1957, pp. 42-43).22

22 Georges Darmois (1888-1960) refers in particular to certain applications of  relativity to
the motion of  Mercury – the only planet in the solar system for which, due to its proximity
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Chazy’s main contribution to the three-body problem concerned the
final behavior of  the system’s motion – in other words, considering the values
of  the time variable as it approaches infinity. he classified seven possible final
trajectories: hyperbolic motions, hyperbolic-elliptic motions, oscillating mo-
tions, constrained motions, parabolic-elliptic motions, hyperbolic-parabolic
motions, and parabolic motions. Chazy analyzed each of  these in detail.

In particular, he theorized the impossibility of  capture in the three-
body problem. The French mathematician Darmois, in his Notice sur la vie et
les travaux de Jean Chazy (1882-1955), published in 1957, wrote on this topic:

«Les résultats ainsi obtenus, qui assujettissent le point représentatif  à demeurer dans
une région ou sur une surface, ont permis à Jean Chazy d’affirmer l’impossibilité
dans certains cas de l’écartement indéfini correspondant à une dislocation d’un
système. C’est ainsi que si l’un des corps vient de l’infini (dans une direction non
parallèle au plan du mouvement des deux autres), il ne peut que s’en éloigner
indéfiniment au bout d’un temps fini passé en leur voisinage. Les deux corps
reviennent alors à un mouvement relatif  elliptique. 
Ce résultat généralisait et précisait une étude de Schwarzschild23 faite dans le cas d’un
troisième corps de masse nulle. Signalons que de nouvelles recherches sont
entreprises, surtout en URSS, sur ce sujet.» (Darmois 1957, p. 40).

We will see, in fact, that the developments in the USSR to which he
referred had already been published in 1947 and 1953 by the scientists Kirill
Aleksandrovich Sitnikov (b. 1926) and Otto Yulyevich Schmidt (1891-1956)
(Schmidt 1947; Sitnikov 1953). Their work provided counterexamples to the
validity of  Chazy’s capture theory in the three-body problem, effectively
refuting the conclusions of  the French mathematician.

to the Sun, the theory of  relativity has produced more precise results than classical theories.
These applications revealed the presence of  a still unexplained body, despite unsuccessful
efforts to identify perturbing masses.
23 Karl Schwarzschild (1873-1916), a German mathematician, astronomer, and astrophysicist.
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1.1.5  Otto Yulyevich Schmidt (1891-1956): A soviet contribution in 1947

«pour une époque comme le premier tiers du xxe siècle, il est en
général difficile d’étudier la science astronomique à l’intérieur des
frontières d’un pays. En effet, dès cette époque, l’astronomie est une
science internationale du point de vue de la collaboration et de la
coordination des recherches. Cette collaboration et cette coordination
ont d’ailleurs été sensiblement renforcées après la constitution de
l’Union Astronomique Internationale, en 1919. 
L’étude de l’astronomie en U.R.S.S. de 1917 à 1935 a attiré notre
attention, car ce pays constituait une exception à cette règle.» 

(Nicolaïdis 1984, p. 6).

The Soviet mathematician, astronomer, and explorer Otto Yulyevich
Schmidt (1891-1956) was cited by Kolmogorov as one of  the sources of
inspiration for his contributions to mechanics.24 Specifically, Kolmogorov
included in the bibliography of  the published text of  his Amsterdam lecture
a paper by Schmidt entitled “On possible Capture in Celestial Mechanics”,
published in the «Doklady Akademii Nauk SSSR» in 1947 (Schmidt 1947).

Born in Mogilev (now Belarus), Schmidt held a brief  post as professor
of  mathematics at the University of  Kiev in 1915, having graduated from the
same university in 1913. In 1923, he became a professor of  mathematics at
Moscow University, and in 1929, he was appointed head of  the algebra
department, where he founded an active school of  group theory.

his professional life was divided between academic and administrative
roles. he held various institutional positions, including serving as head of
one of  the divisions of  the people’s Commissariat for Food, created in 1917
following the dissolution of  the Ministry of  Food by the Bolsheviks. In April
1924, he was appointed editor-in-chief  of  the Great Soviet Encyclopedia – a
project undertaken in three editions launched in 1926, 1949, and 1977. As
Laurent Mazliak describes it, it was “a gigantic enterprise to the glory of
‘Marxist science’ and of  the Soviet regime” (Mazliak 2018, p. 25). Schmidt
remained chief  editor until 1941.

Kolmogorov was a principal contributor to the Encyclopedia, publish-
ing more than one hundred entries between 1937 and 1975. he was tasked

24 In his conversation with Arnol’d, which I analize in Chapter 2, §2.1.
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with writing the entry “Mathematics” for all three editions, published in 1938,
1950, and 1974, respectively.25

Their collaboration on the Encyclopedia, along with their positions as
colleagues at the same university, undoubtedly enabled the two mathema-
ticians to engage with one another and exchange ideas. Several comments
attest to this, including one written by Kolmogorov himself  regarding his
interest in the theory of  turbulence:

«In 1946 O. Yu. Shmidt suggested that I should head the Turbulence Laboratory in
the Institute of  Theoretical Geophysics, USSR Academy of  Sciences. In 1949 this
post was passed to Obukhov. I was not engaged in experimentation myself, but I
worked extensively with other researchers on computation and graphical processing
of  the data.» Kolmogorov’s words in (Tikhomirov 1991, p. 902).

Schmidt was a mathematician, but also an explorer and astronomer,
although his research in the latter field dates only to the final decade of  his
life. In 1949, he published the book A Theory of  Earth’s Origin (in Russian),
which compiled the content of  four lectures delivered at the Geophysical
Institute of  the USSR Academy of  Sciences in 1948:26

«The problem of  the origin of  the Earth is one of  such great importance to science
that it possesses interest not only for the specialists – astronomers, geophysicists,
geologists, geographers and others – but also for the general public. The Soviet
people have made very considerable cultural progress so that it is only natural that
they should show an interest in this problem and demand an answer from their
scientists: the problem of  the Earth’s origin, say our people, must be solved as quickly
as possible on account of  its specific importance to the study of  nature and from
the standpoint of  our philosophy of  dialectical materialism.
The author’s hypothesis of  the genesis of  the Earth and other planets proposed in
1944 met with a wide response, gave rise to extensive criticism and discussion. In
the course of  time the hypothesis has developed and grown into a detailed theory.
Apart from separate publications in scientific journals it became necessary to publish,
at least, an interim report on basic results and methods: The First Edition of  this
little booklet was published in 1949: it consisted of  four lectures which I delivered

25 See also (Graham 1993) and (Mazliak 2018) for further references.
26 Author’s preface to the second edition, English version in (Schimdt 1958, p. 7).
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at the Academy of  Sciences Geophysical Institute in 1948.»

One of  the articles referred to by Schmidt is precisely (Schmidt 1947)
– the same work cited by Kolmogorov.

The reason for this renewed interest in celestial mechanics and
astronomy in the late 1940s may also lie in Schmidt’s prudence in addressing
such a politically sensitive topic during the 1930s – a period that, as we will
see in the next chapter, led to the dramatic vicissitudes of  the purge of
astronomers in 1936-1937. his caution has also been noted by Mazliak, who
observes that, unlike other contributors to the Great Soviet Encyclopedia,
Schmidt was spared from the political persecutions of  that era:

«[…] a large majority of  its [first editorial board] members were victims of  the
political storms experienced by Soviet Union in the 1930s. It is therefore slightly
surprising that Otto Schmidt could remain at the head of  the enterprise almost until
the end (he resigned in fact in 1941), despite his proximity with Bukharin and even,
to a certain extent, with Trotsky. Maybe Stalin thought it was useless for the regime
to touch an internationally too well-known scientist. But above all, Schmidt himself
had the wisdom, as soon as the end of  the 1920s, not only to make a brilliant come
back to mathematics (he was appointed to the newly created Chair of  higher algebra
at Moscow university in 1929 and remained there until 1949), but also to participate
to long-distance scientific exploratory expeditions such as the German-Soviet
expedition to the pamir (1928) and afterwards the long expedition in the Arctic
(1930-1934), which maintained him far from the internal struggles tearing the party
apart at the turn of  the 1930s.» (Mazliak 2018, p 35).

And, far removed from the years of  the purges, Schmidt’s interest in
topics related to celestial mechanics is evident. It is enough to note that in
the introduction to (Schmidt 1958), he emphasizes the specific importance
of  celestial mechanics to the study of  nature and to the philosophical
perspective of  dialectical materialism.

In a 1972 article by the Japanese astronomer Yusuke hagihara, titled
“Recent Advances of  Celestial Mechanics in the Soviet Union” (hagihara
1972), the first section is dedicated precisely to the problem of  capture,
beginning with Schmidt’s contributions.

In §3.3, I will explore the significance of  Schmidt’s work in celestial
mechanics within the context of  Kolmogorov’s research program.
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1.2    Metrical and spectral studies: modern ergodic theory
and the theory of  dynamical systems in the 1930s

The essays by Whittaker and Charlier helped the international scholarly
community recognize that the ancient and illustrious discipline of  mechanics
required new horizons for theoretical development. What, then, were the
subsequent developments in the first decades of  the 20th century? In this
paragraph, I consider a series of  contributions – many inspired by poincaré’s
approach – that Andrej Kolmogorov regarded as crucial to the development
of  his work on classical mechanics. In particular, he referred to the evolution
of  the theory of  dynamical systems at the beginning of  the century, the
emergence of  ergodic theory, and the contributions to nonlinear mechanics
made in the Soviet Union during the 1930s.

historians of  science have largely shifted their attention away from the
evolution of  classical mechanics after 1900, focusing instead on the nascent
physical theories of  the twentieth century: the theory of  relativity and the
new quantum mechanics. In his 1957 Essay on the History of  Mechanics (Dugas
1957), René Dugas traces the origins of  dynamics to the end of  the Middle
Ages, its rapid development through the works of  Kepler, Galileo, Descartes,
huygens, and Newton, and its refinement by Euler, Lagrange, Laplace, and
hamilton. This lineage culminates in the reflections of  the French scholars
poincaré, paul prudent painlevé (1863-1933), and pierre Maurice Marie
Duhem (1861-1916). Dugas then turns to what he describes as the “modern
physical theories of  mechanics.” Around this new paradigm, a distinct
scientific community emerged: the so-called theoretical physicists. The rise
of  these modern theories led to the retroactive labeling of  earlier approaches
as “classical”, referring to studies in mechanics grounded in the 19th-century
mathematical tradition.

While modern mechanics attracted broad attention – including from
the general public – and relegated classical approaches to the background,
research in the wake of  poincaré continued, particularly in the United States
and the Russian Empire. These were two relatively young mathematical
communities, peripheral within the international scientific landscape. It was
a time marked by war and political totalitarianism, yet the connection between
the two countries remained strong, encompassing fields such as education,
agricultural planning, astronomy, and mathematics. poincaré’s “new methods”
in celestial mechanics served as a key source of  ideas and inspiration during
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this transitional period. It was a time of  profound change, during which the
theory of  dynamical systems was conceived – a development that aimed to
extend the scope of  differential equations to encompass time-evolving
phenomena beyond the motion of  inanimate bodies. As in earlier periods,
research in mechanics was closely linked to research in mathematical analysis,
which experienced significant advancements during those years.

In 1985, the first of  three volumes of  Selected Works by Kolmogorov, titled
Mathematics and Mechanics, was published in Russian. The volume was edited
by the Russian mathematical physicist Vladimir Mikhailovich Tikhomirov (b.
1934), a student of  Kolmogorov. In it, Kolmogorov includes commentary
on his three major works on mechanics from the 1950s:

«My papers on classical mechanics appeared under the influence of  von Neumann’s
papers on the spectral theory of  dynamical systems and, particularly under the
influence of  the Bogolyubov-Krylov paper of  1937. I became extremely interested
in the question of  what ergodic sets (in the sense of  Bogolyubov-Krylov) can exist
in the dynamical systems of  classical mechanics and which of  the types of  these
sets can be of  positive measure at present this question still remains open). To
accumulate specific information we organized a seminar on the study of  individual
examples. My ideas concerning this topic and closely related problems aroused wide
response among young mathematicians in Moscow.» (Kolmogorov 1991, p. 521)27.

The hungarian scholar John von Neumann (1903-1957), a rising star
in German mathematics between the two world wars, was active in both
classical and quantum mechanics. In fact, his contribution to classical
mechanics appears to have been encouraged by his contact with his senior
colleague George Birkhoff  (1884-1944), a relationship established in the late
1920s when von Neumann began his visits to the United States. As we shall
see, a young American collaborator of  Birkhoff ’s, Bernard Koopman (1900-
1981), served as a bridge between Birkhoff  and von Neumann.

As early as 1911, Birkhoff  had begun his work in classical mechanics
in the wake of  poincaré, laying the foundations for the theory of  dynamical
systems. In the interwar years, he emerged as a leading figure not only in the
United States but also among scholars working in the Soviet Union – thus

27 The English text presented here was published in the English edition, translated by the
Russian mathematical physicist Vladimir Markovich Volosov, and released in 1991.
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contributing to the international recognition of  the then-young American
mathematical community.

In this paragraph, I examine the contributions of  Birkhoff, von
Neumann, and Koopman in the early 20th century in the United States and
trace a line that connects their work to that of  the Soviet scholars Nikolay
Mitrofanovich Krylov and Nikolay Nikolaevich Bogoliubov, who collaborated
in the 1930s in Kiev, at the Ukrainian Academy of  Sciences, on the study of
linear and nonlinear mechanical oscillations.

1.2.1 General dynamical systems: George David Birkhoff ’s work in the
wake of  Poincaré (1912-1927)

«In a paper recently published in the «Rendiconti del Circolo Matematico
di palermo» (vol. 33, 1912, pp. 375-407) and entitled “Sur un théorème de
Géométrie”, poincaré enunciated a theorem of  great importance, in par-
ticular for the restricted problem of three bodies; but, having only succeeded
in treating a variety of  special cases after long-continued efforts, he gave
out the theorem for the consideration of  other mathematicians.
For some years I have been considering questions of  a character similar
to that presented by the theorem and it now turns out that methods
which I have been using are here applicable. In the present paper I give
the brief  proof  which I have obtained, but do not take up other results
to which I have been led.» 

(Birkhoff  1913, p. 14).

When publishing the above-quoted words, George David Birkhoff
(1884-1944) was 28 years old and had just been appointed assistant professor
at harvard. The theorem to which Birkhoff  refers is stated as follows:

Theorem 2. Poincaré’s geometric theorem.28 Let us suppose
that a continuous one-to-one transformation T takes the ring R,
formed by concentric circles Ca and Cb of  radii a and b respec-
tively (a > b > 0), into itself  in such a way as to advance the
points of  Ca in a positive sense, and the points of  Cb in the neg-

28 This statement is taken from (Birkhoff  1912, p. 14).
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ative sense, and at the same time to preserve areas. Then there
are at least two invariant points.29

As Florin Diacu and philip holmes recall in their essay Celestial
Encounters: The Origins of  Chaos and Stability (1996), poincaré once wrote to the
editor of  the palermo journal «Rendiconti del Circolo Matematico» as if
anticipating his own imminent death:

«At my age, I may not be able to solve it, and the results obtained, which may put
researchers on a new and unexpected path, seem to me too full of  promise, in spite
of  the deceptions they have caused me, that I should resign myself  to sacrificing
them.» (poincaré in 1912, quoted in Diacu, holmes 1996, p. 53).

poincaré died on July 17, 1912, and three months later Birkhoff
submitted a paper – quoted in part above – to the «Transactions of  the
American Mathematical Society», presenting a proof  of  the theorem. The
article was published in January 1913. A testament to Birkhoff ’s deep
intellectual connection to poincaré was written by Marston Morse30 (1892-
1977) in his note “George David Birkhoff  and his Mathematical Work”:

«Birkhoff  admired Moore of  Chicago, but not to the point of  imitating him. he
respected Bôcher31 no less, and did him the honor next to poincaré of  following his
mathematical interests. F. R. Moulton’s study of  the work of  poincaré had something
to do with Birkhoff ’s own intense reading of  poincaré. poincaré was Birkhoff ’s true
teacher. There is probably no mathematician alive who has explored the works of
poincaré in full unless it be hadamard, but in the domains of  analysis Birkhoff
wholeheartedly took over the techniques and problems of  poincaré and carried on.»
(Morse 1946, p. 357).

poincaré’s influence is evident in several of  Birkhoff ’s publications

29 By invariant point, we mean a point of  the ring that remains fixed under the transformation T.
30 harold Calvin Marston Morse (1892-1977) was an American mathematician, known for
developing variational theory in general with applications to equilibrium problems in
mathematical physics, a theory which is now called Morse theory.
31 Maxime Bôcher (1867–1918) was an American mathematician who worked on differential
equations, series, and algebra.
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from the years 1912-1915, such as “Quelques théorèmes sur le mouvement
des systèmes dynamiques” (Birkhoff  1912)32 and “The Restricted problem
of  Three Bodies” (Birkhoff  1915). 

The latter, in particular – which was awarded the Querini Stampalia
prize by the Royal Venice Institute of  Science – contains the leitmotiv that
would guide Birkhoff ’s research in the years to follow. It marks a turning
point, leading him to gradually distance himself  from celestial mechanics –
though he continued to engage with the field – and toward the publication
of  Dynamical Systems (1927).

«Thorough investigation of  non-integrable dynamical problems is essential for the
further progress of  dynamics. Up to the present time only the periodic movements
and certain closely allied movements have been treated with any degree of  success
in such problems, but the final goal of  dynamics embraces the characterization of
all types of  movement, and of  their interrelation. The so-called restricted problem
of  three bodies, in which a particle of  zero mass moves subject to the attraction of
two other bodies of  positive mass rotating in circles about their center of  gravity,
affords a typical and important example of  a non-integrable dynamical system. It is
this problem which I consider in the present paper.» (Birkhoff  1915, p. 265)

Birkhoff ’s Dynamical Systems (1927) fully embraces the qualitative
approach that poincaré envisioned for celestial mechanics. Tatiana Roque,
regarding Birkhoff ’s work, argues: 

«We do not deny that poincaré was the true creator of  the qualitative approach, since
he proposed key methods for a new treatment of  differential equations. however,
in order to identify the birth of  a new theory, it is necessary to go beyond the search
for methods now recognized as pertaining to this theory. Indeed, we can say that
the field of  dynamical systems was not created until its methods were explicitly
defined as qualitative as opposed to the older ones. From this standpoint, the theory
as such started with the works of  Birkhoff, in particular those in which he discussed
the appropriate qualitative definition for stability.» (Roque 2011, p. 298).

32 Tatiana Roque, (Roque 2011, p. 298), comments on this as follows: «The expression
“dynamical systems” – in the context of  mathematical studies ondifferential equations –
appears for the first time in the title of  one of  his articles “Quelques théorèmes sur le
mouvement des systèmes dynamiques”, presented in 1909 to theAmerican Mathematical
Society and published in 1912.»
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Birkhoff  develops and applies concepts from general topology, while
also extending the scope of  the analysis beyond celestial mechanics. This is
particularly evident in Chapter VII, titled “General Theory of  Dynamical
Systems,” where the author’s intentions are clearly stated:

«The final aim of  the theory of  the motions of  a dynamical system must be directed
toward the qualitative determination of  all possible types of  motions and of  the
interrelation of  these motions.
The present chapter represents an attempt to formulate a theory of  this kind.
As has been seen in the preceding chapters, for a very general class of  dynamical
systems the totality of  states of  motion may be set into one-to-one correspondence
with the points, P , of  a closed n-dimensional manifold, M , in such wise that for
suitable coordinates x1, . . . , xn, the differential equations of  motion may be written

in the vicinity of  any point of  M, where the Xi are n real analytic functions and
where t denotes the time. The motions are then presented as curves lying in M. One
and only one such curve of  motion passes through each point P0 of  M, and the
position of  a point P on this curve varies analytically with the variation of  P0 and
the interval of  time to pass from P0 to P. As t changes, each point of  M moves along
its curve of  motion and there arises a steady fluid motion of  M into itself.
By thus eliminating singularities and the infinite region, it is evident that we are
directing attention to a restricted class of  dynamical problems, namely those of
“non-singular” type.
however, most of  the theorems for this class of  problem admit of  easy
generalization to the singular case. The problem of  three bodies, treated in chapter
Ix, is of  singular type.» (Birkhoff  1927, pp. 189-190).

David Aubin recalls the paradoxical fate of  Birkhoff ’s ideas:

«Albeit well received by the mathematical press when it was first published in 1927,
DS was a textbook for a field of  mathematics that barely existed for some decades
to come. Its main domain of  application – celestial mechanics – seems to have lost
some of  its urgency now that relativity theory and quantum mechanics were
revolutionizing physics. By insisting on considering general problems of  dynamics
as opposed to particular ones and by looking globally at sets of  motions rather than
particular orbits, Birkhoff ’s way of  approaching the topic was highly original. Not
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only he was creating and up-to-date topological apparatus for the task at hand, he
also confronted head-on the problem of  finding a role for dynamical theory when
the fundamental equations of  physics were being recast. The striking contrast
between conformist subject-matter and innovative mathematical and epistemological
frameworks can account for the unusual career of  DS, both the relative oblivion
into which it fell and its later success.» (Aubin 2005, p. 872).33

1.2.2 Bernard O. Koopman’s “Hamiltonian systems and transforma-
tions in Hilbert space” (1931) and the role of  John von Neumann
(1903-1957)

In the first decade of  the 20th century, a new mathematical tool was
beginning to take shape: functional analysis. This field introduced a further
level of  abstraction, emerging from studies on n-dimensional Euclidean space
by considering linear operators (functions) defined on function spaces. As
Reinhard Siegmund-Schultze notes in his overview of  its origins:

«The essence of  the development of  functional analysis was the transfer of  a number
of  concepts from n-dimensional Euclidean space Rn and the functions defined on
it to infinite-dimensional “function spaces” of  various types and their “operator” –
concepts such as compactness, boundedness, convergence, distance, continuity,
completeness, dimension, scalar product and linearity. To bring this about, a way
was needed to pass from the finite to the infinite; but the form of  this passage was
the object of  great concerned even strife among the early functional analysts. Often
it was only through generalizing – through the increasingly axiomatic definition of
the new spaces, where Rn was subordinated as a special case – that the relations of
the original concepts, and their partial logical dependence or independence, became
recognizable. Concepts such as that of  convergence became diversified, while
equivalent properties such as boundedness and compactness separated from each
other. In addition, new fundamental principles and concepts appeared that made no
sense in the finite realm (e.g. the hahn-Banach extension theorem, category theory
and separability) and could be introduced only with the help of  Georg Cantor’s set
theory.» (Siegmund Schultze 1994, p. 375).

33 The study of  the works of  poincaré and Birkhoff  in the USSR should also be taken into
account here, as in Morse’s presentation of  Birkhoff ’s work following poincaré.

71



hilbert spaces, originating from David hilbert’s work on integral
equations, would prove to be a powerful tool in the development of  partial
differential equations, quantum mechanics, and ergodic theory:

«The breakthrough to axiomatic functional analysis was made by John von Neumann
in work beginning in 1928 that showed the applicability of  hilbert spectral theory
to quantum mechanics. Von Neumann abstracted from the results of  hilbert’s fourth
Mitteilung (1906) on the theory of  integral equations. ln typical mathematical gener-
alization for its own sake, hilbert had considered bounded, not completely contin-
uous “functions of  infinitely may variables” in l 2, even though only the completely
continuous ones appeared in applications. Von Neumann extended the results to
unbounded operators in hilbert space which he had defined axiomatically in 1928.
With the appearance in 1932 of  his Mathematische Grundlagen der Quantemmechanik and
Banach’s Théorie des opérations linéaires, functional analysis was established as one of
the most important fields of  modern analysis, as an independent mathematical dis-
cipline.» (Siegmund Schultze 1994, p. 384).34

This established a new field in which mathematicians study the
properties of  broadly defined linear spaces and also provided a rich source
of  ideas for topology.

A hilbert space is an infinite-dimensional space whose points are
numerical sequences (x1, x2, . . .) such that the infinite sum of  squares
converges. As a metric space, the hilbert space can be regarded as a linear
topological space of  infinite dimension.

The application of  operator theory to the study of  dynamical systems
led to a fundamentally new approach to understanding dynamics. It was
precisely on the basis of  these ideas that ergodic theory developed during the
1930s, involving Birkhoff, one of  his students, Bernard Osgood Koopman
(1900-1981), and John von Neumann.

On this subject, Giorgio Israel and Ana Millán Gasca wrote:

«his [von Neumann’s] first papers in English (the principal language of  his publica-
tions from 1935 on), published in 1932 in the National Academy of  Sciences pro-
ceedings, regarded the ergodic hypothesis of  statistical mechanics. [...] In 1929 he
had published in the German journal «Zeitschrift für physik» a study on the ergodic

34 See von (Neumann 1929a, 1929b).
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hypothesis and Boltzmann’s “h theorem” in the field of  quantum mechanics. he
later developed the idea of  using measure theory to provide a mathematical formal-
ization of  the ergodic theory. Later on the American mathematician George D. Birk-
hoff  improved and extended these results; this marked the beginning of  a line of
research of  great importance both for statistical mechanics and for the theory of
dynamical systems.
In this way, ergodic theory began to emerge as an autonomous mathematical theory.
Von Neumann continued to take an interest in ergodic theory and discussed it with
Wiener, but he wrote no further articles on this topic.
he instead continued to study the theory of  operators in hilbert spaces, obtaining
a general formulation of  spectral theory.» (Israel, Millán Gasca 2009, pp. 80-81).

These new connections between mathematics and physics were the
focus of  von Neumann’s opening lecture at the 1954 Amsterdam confer-
ence:35

«The invitation of  the Organizing Committee for me to speak about “Unsolved
problems in mathematics” fills me as it should with considerable trepidation and a
prevailing feeling of  personal inadequacy. hilbert gave a talk on this subject at the
similar congress about 50 years ago and this is a very formidable precedent. he
stated about a dozen unsolved problems in another widely separated areas of
mathematics, and they proved to be prototypical for much of  the development that
followed in the next decades. It would be absolutely foolish, if  I tried to emulate
this quite singular feat. In addition I do not know the future and the future at any
rate can only be predicted ex post with any degree of  reliability. I will, therefore,
define what I am trying to do in a much more narrow way, hoping that in this manner
I have a better chance of  not failing. I will limit myself  to a particular area of
mathematics which I think I know and I will talk about it and about what its open

35 A parallel may be drawn between the lives of  Kolmogorov and von Neumann. In addition
to sharing the same year of  birth and overlapping scientific interests, both were prominent
figures within the international mathematical community of  their time. They were also deeply
affected by the dramatic events of  20th-century European history – from the revolutionary
upheaval of  1905 in the Russian Empire to the two world wars and the rise of  totalitarian
regimes. In the mid-century decades, both experienced the fragmentation of  political and
cultural unity during the Cold War, which divided the international scientific community
between the NATO bloc, led by the United States, and the Warsaw pact bloc. Von Neumann,
who became an American citizen in 1937, and Kolmogorov, who remained in the USSR,
came to symbolize Western and Soviet science, respectively, from the 1930s onward.
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ends appear to be, particularly in some directions which are not the ones that the
evolution so far has mainly emphasized and which are, I think, quite important. I
will speak about operator theory and about its connections with various areas and quite particularly
about how it hangs together with a number of  open questions in physics and how I think it
hangs together or ought to hang together with a number of  questions in logics and
probability theory and questions of  the foundations of  these and certain
reformulations of  these which I think it puts into a quite different light from the
one with which we usually look at these subjects.» (quoted in Rédei, Stöltzner 2001,
p. 231, my emphasis).

In the introduction to his book Mathematische Grundlagen der Quanten-
mechanik (1932), von Neumann wrote: 

«The object of  this book is to present the new quantum mechanics in a unified
representation which, so far as it is possible and useful, is mathematically rigorous,
[…], a presentation of  the mathematical tools necessary for the purposes of  this
theory will be given, i.e., a theory of  hilbert space.» (von Neumann 1932, p. vii).36

In the same year, von Neumann published an article in the U.S. journal
«Annals of  mathematics», written in German, titled “Zur Operatorenmeth-
ode in der klassischen Mechanik”. A decade later, he published a second part
in the same journal – this time in English and co-authored with the hungar-
ian-born mathematician paul Richard halmos (1916-2006) – titled “Operator
Methods in Classical Mechanics, II”.

Let us now take a closer look at the origins of  this line of  research,
drawing also on halmos’s 1958 paper “Von Neumann on Measure and Er-
godic Theory” (halmos 1958), which reflects on von Neumann’s contribu-
tions to these fields.

Bernard Koopman, a student of  Birkhoff, graduated cum laude in 1922
with a thesis on mechanics.37 philip M. Morse describes Koopman as an ex-
ceptionally fascinating individual:

«The life of  Bernard Koopman covered a wide span, both geographlically and

36 The English text presented here was published in 1955 by princeton University press and
translated by the American physicist Robert Thomas Beyer (1920-2008).
37 See (Morse 1982).
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intellectually. he spent his youth in France and Italy but he came back to harvard
for his college education, and his last days were spent in his beloved Randolph, New
hampshire, in the shadow of  Mounts Adams and Madison. his interests were
likewise spacious. he could dogmatize on the merits of  pommard versus Fleurie or
reminisce, in his characteristic Cambridge (Mass.) accent, about climbs in the Alps,
the Tetons or the White Mountains. During his postdoctoral fellowship in paris he
listened to the lectures of  Borel, Lebesgue and hadamard, but his lifelong interests
were in the less “pure” aspects of  mathematics, hamiltonian dynamics and the bases
of  probability; and his later years were spent enriching the field of  operations
research. he was a stimulating companion. Once one pierced the crust of  rough
frankness, one found a supportive and permanent friend.» (Morse 1982, p. 417).

In the late 1920s, Koopman was working on the application of  operator
theory to hamiltonian systems in classical mechanics. philip M. Morse
describes the young Koopman as a link between von Neumann and Birkhoff:

«Every summer he was off  somewhere: California, Rome, the Alps, the Tetons and
always a week or month at Randolph. Even during term time he would travel: to
princeton, particularly after John von Neumann arrived there; and back to harvard,
to talk things over with Birkhoff.» (Morse 1982, p. 419).

In 1931, Koopman published hamiltonian Systems and Transforma-
tions in hilbert Space in the proceedings of  the National Academy of  Sci-
ences of  the United States of  America.

«In recent years the theory of  hilbert space and its linear transformations has come
into prominence. It has been recognized to an increasing extent that many of  the
most important departments of  mathematical physics can be subsumed under this
theory. In classical physics, for example in those phenomena which are governed by
linear conditions – linear differential or integral equations and the like, in those
relating to harmonic analysis, and in many phenomena due to the operation of  the
laws of  chance, the essential role is played by certain linear transformations in hilbert
space. And the importance of  the theory in quantum mechanics is known to all. It
is the object of  this note to outline certain investigations of  our own in which the
domain of  this theory has been extended in such a way as to include classical
hamiltonian mechanics.» (Koopman 1931, p. 315).
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Koopman discovered a connection between measure-preserving trans-
formations and unitary operators on a hilbert space. he proved that the func-
tional operator induced by a measure-preserving transformation is unitary.
Specifically, if  T is a measure-preserving transformation on a measure space
and U a transformation on a hilbert space, and if  for every function f  in the
hilbert space the function U f, defined by

is still in the hilbert space, then it can be shown that U is a unitary operator,
i.e., it is an isomorphism between two hilbert spaces that preserves the scalar
product. Therefore, knowledge of  the analytic theory of  these operators
provides insight into the geometric behavior of  the transformations (halmos
1958). This work was regarded by all the key figures involved – Koopman,
Birkhoff, and von Neumann – as marking the beginning of  what halmos
calls modern ergodic theory.38

Morse cites an account by Koopman’s friend and colleague, Edgar
Lorch, who reconstructs the chronology of  the foundational articles on
ergodic theory – distinct from their publication dates – based on the ongoing
exchanges among Koopman, Birkhoff, and von Neumann.

«[...] he [Koopman] was in close contact with John von Neumann and with G. D.
Birkhoff. In his open way he discussed freely, during his visits, what was going on
elsewhere.
This put him in the middle in the controversy over the ergodic theorem. Questions
of  ergodicity had been in the foreground for many years and had attracted the at-
tention of  powerful mathematicians. Koopman was well versed in this domain and
had discussed it with both Birkhoff  and von Neumann. In March of  1931, Koop-
man published a note in the National Academy proceedings, transforming the prob-
lem into one dealing with one parameter unitary groups in hilbert space.
Since these groups may be represented by self-adjoint transformations and since they
were known to have a particularly decent structure, the door was open to rapid ex-
tension. Koopman communicated his ideas to von Neumann, who, in a short time,
gave a proof  of  the ergodic theorem in a hilbert space sense, establishing convergence
in the mean but not actual convergence. In a state of  considerable excitement Koop-

38 The term modern distinguishes this development from the earlier formulation of  ergodic
theory by Boltzmann.
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man told von Neumann’s result to Birkhoff, who worked feverishly and succeeded in
proving the theorem, establishing point-wise convergence almost everywhere. Birk-
hoff ’s notes were published in the late 1931 proceedings of  the Academy. Von Neu-
mann’s results, which had been obtained earlier, were published in the early 1932
proceedings, seemingly a year later. Koopman, who had been the catalytic agent in
the process, felt quite embarrassed. however the problem was clarified by the publi-
cation of  three notes; one by Birkhoff  and Koopman, another by Koopman and von
Neumann and a third by von Neumann alone, setting the work in its proper order.
All gave priority of  place to Koopman’s original result.» (Morse 1982, pp. 419-420).

I provide a few details here to aid in understanding Kolmogorov’s
presentation of  his research program in classical mechanics (see below, §3.1).39

From a mathematical perspective, ergodic theory can be viewed as emerging
from the interaction between measure theory and transformation group
theory. The existence of  invariant measures – i.e., probability measures that
remain unchanged under an automorphism – is a fundamental assumption
of  ergodic theory. Classical conservative systems naturally possess invariant
measures, making them a fruitful domain for applying ergodic theory.

A motion of  a given dynamical system is said to be transitive (or quasi-
ergodic) if  it is dense in the entire phase space Ω. If  such a motion exists, the
dynamical system is said to be transitive.

The concept of  metric transitivity was first defined in a 1928 paper by
George D. Birkhoff  and paul Althaus Smith (1900-1980), a former student
of  Solomon Lefschetz (1884-1972), titled “Structure Analysis of  Surface
Transformations.”

«A transformation will be called metrically transitive if  there exists no measurable
invariant set E such that 0 < m(E) < m(S). A transformation of  this type is also
transitive in the ordinary sense.» (Birkhoff, Smith 1928, p. 365).

The importance of  ergodicity lies in the fact that it allows the study of
dynamical systems – otherwise practically intractable when the number of
degrees of  freedom is high – to be replaced by the computation of  averages

39 The topic is broad; here we aim only to outline its salient points briefly, minimizing the
use of  symbolic mathematics. For further detail, see (halmos 1958); (Aubin and Dahan-
Dalmedico 1996, 2002, 2007); (Moore 2015); and (Morse 1946).
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with respect to the invariant measure. As Aubin writes:

«DS was not Birkhoff ’s last work on the topic. In particular, his proof  in Birkhoff
1931 of  the ergodic theorem was deemed as important as his proof  of  poincaré’s
geometric theorem. Introduced by Ludwig Boltzmann, ergodicity has been a corner-
stone of  statistical mechanics. It described systems such that each particular motion
when continued indefinitely passed through every configuration compatible with en-
ergy conservation. Allying topological consideration with henri Lebesgue’s theory
of  integration, Birkhoff  developed the notion of  transitivity introduced in DS (that
is, the property of  a dynamical system whereby small neighborhoods of  curves  of
motion filled the whole manifold up to a set of  measure zero) and showed that it was

a widespread property for hamiltonian systems.» (Aubin 2005, pp. 877-878).

An example of  an ergodic system: the integrable systems
of  classical mechanics

Consider a dynamical system in a 2n-dimensional phase space Ω
whose elements are (x1, . . . , xn , y1 . . . , yn). The equations of
motion will be described by the hamiltonian H such that:
where i = 1, . . . , n.
If  the system is integrable, then the Ω phase space is shown to
decompose into n tori with dimension n. On each torus it hap-
pens that a point that starts from it will follow a trajectory on the

torus, without ever leaving ita. Therefore, the system admits a
natural guiding measure, which is given by the volume element.
Now, if  the frequencies (ω1 , . . . ,ωn) of  motion are rationally
independent, i.e.,
for any (m1, . . . , mn) ∈ℤ the orbit of  a point on a torus is said to
be quasi-periodic and densely fills the torus, never passing through
the initial point, but approaching it an infinite number of  times.
The density of  the orbits allows the equality of  the temporal
averages with the spatial ones and this means that the motions
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of  an integrable hamiltonian system are bounded (on the tori)
and the system is ergodic.

a The torus is said to be invariant with respect to the flow.

Let us quote from von Neumann’s “proof  of  the Quasi-Ergodic
hypothesis”, published in early 1932 (von Neumann 1932a):

«The purpose of  this note is to prove and to generalize the quasi-ergodic hypothesis
of  classical hamiltonian dynamics (or “ergodic hypothesis”, as we shall say for
brevity) with the aid of  the reduction, recently discovered by Koopman, of
hamiltonian systems to hilbert space, and with the use of  certain methods of  ours
closely connected with recent investigations of  our own of  the algebra of  linear
transformations in this space.» (von Neumann 1932a, p. 70).

This reflects halmos’s interpretation of  von Neumann’s actual
intentions regarding ergodic theory:

«It is therefore curious, but true, that von Neumann always looked at ergodic theory
as a part of  measure theory; he never worked on the abstract versions. What
fascinated him most was the delicate interplay between measure and spectrum. The
ergodic theorem itself  (mean or individual) was almost never needed in his later
work; its main role was that of  historical justification for studying measure-
preserving transformations.» (halmos 1958, p. 92).

In fact, the hungarian mathematician emphasized this aspect in his
article. 

«The pith of  the idea in Koopman’s method resides in the conception of  the
spectrum E(λ) reflecting, in its structure, the properties of  the dynamical system
more precisely, those properties of  the system which are true “almost everywhere,”
in the sense of  Lebesgue sets. The possibility of  applying Koopman’s work to the
proof  of  theorems like the ergodic theorem was suggested to me in a conversation
with that author in the spring of  1930.» (von Neumann 1932a, p. 71).

Just two months after von Neumann’s publication on the quasi-ergodic
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theorem, he and Koopman co-authored a second paper titled “Dynamical
Systems of  Continuous Spectra” (Koopman, von Neumann, 1932). The
paper opens with the following sentence: 

«In a recent paper by B. O. Koopman, classical hamiltonian mechanics is
considered in connection with certain self-adjoint and unitary operators in hilbert
space S (= L2). The corresponding canonical resolution of  the identity E(λ), or
“spectrum of  the dynamical system,” is introduced, together with the conception
of  the spectrum revealing in its structure the mechanical properties of  the system.
In general, E(λ) will consist of  a discontinuous part (the “point spectrum”) and
of  a continuous part.»

The theorem proved in this paper – now known as the shuffling theorem
– relates specific geometric properties of  a measure-preserving transforma-
tion T to the spectral properties of  the corresponding unitary operator U in
hilbert space.

The authors analyze cases in which the spectrum is either continuous
or purely discrete. In the case of  a pure point spectrum, they show that if
two measure-preserving transformations, S and T , are both ergodic and have
pure spectra, then a necessary and sufficient condition for the existence of  a
measure isomorphism between S and T is the unitary equivalence of  the
corresponding unitary operators on the hilbert space.

In §3.1, I examine Kolmogorov’s papers from 1953-1954 and demon-
strate that the issues addressed by von Neumann and Koopman served as a
major source of  inspiration to him – from his initial contribution in 1953
(Kolmogorov 1953) to his presentation of  a research program on a metric
and spectral approach to dynamics at the Amsterdam ICM.

1.2.3 Measure theory for the dynamical systems of  nonlinear mechan-
ics (1937): the work of  Nikolay M. Krylov (1879-1955) and Nikolay
N. Bogolyubov (1909-1992)

Dans la théorie des systèmes dynamiques un progrès très important a été
réalisé ces derniers temps grâce aux travaux de B. O. Koopman, T. Carleman,
E. hopf, J. v. Neumann et G. D. Birkhoff  qui ont établi une série de théorèmes
remarquables dits ergodiques concernant certaines moyennes temporelles et
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leur connexion avec les moyennes spatiales pour une classe très étendue de
systèmes dynamiques. 

(Krylov, Bogoliubov 1937, p. 65).

Mechanical studies in Russia found fertile ground due to a strong
tendency to bridge theory and practice. This phenomenon extended across
all major cultural centers of  the Soviet Union, including the cities of  Kazan,
Kiev, Odessa, and Kharkov.

As a result, “between the 1930s and 1970s, an area of  scientific culture
was established in the Soviet Union, often isolated, where privileged topics
would be developed within powerful scientific schools. The study of
nonlinear dynamical systems and that of  stochastic processes are among the
most important topics” (Diner 1993, p. 336).

In the 1930s, the cultural fervor surrounding mathematics and physics
– driven by the goal of  developing applied theories – led to unprecedented
growth and innovation. At the same time, there remained sustained attention
to classical mechanics, approached through the lens of  dynamical systems
theory. Dissipative systems received particular interest, as many of  them
found application in the technological sphere.

In Kiev – today the capital of  Ukraine – during the 1930s, Nikolaj
Mitrofanovich Krylov (1879-1955) and Nikolaj Nikolaevich Bogolyubov
developed new methods in nonlinear mechanics, with applications to the
theory of  dynamical systems. Krylov, born in St. petersburg, was trained as a
mining engineer at the St. petersburg Mining Institute, but his contributions
to mathematics were so significant that in 1917 the University of  Kiev
awarded him an honorary degree in mathematics (Gruzin, Brega 2008).40 In
the early 1920s, Krylov recognized the potential of  a young Russian boy –
just fourteen years old – named Nikolay Nikolayevich Bogolyubov (1909-
1992). Encouraged by Krylov to continue his studies, Bogolyubov was
exceptionally admitted in 1925 to the postgraduate mathematics program at
the Academy of  Sciences of  the Ukrainian SSR. Just three years later, at the
age of  nineteen, he defended his thesis entitled “The application of  the direct
methods of  the calculus of  variations to the investigation of  irregular cases
of  a simplest problem”, and in 1930, he received his doctorate in

40 he was denied admission as a free student of  mathematics and physics at Kiev University
due to failing a course in classical languages.
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mathematics.
The collaboration between student and teacher yielded significant

results in the theory of  nonlinear oscillations – a field they would come to
refer to as “nonlinear mechanics.”41 In January 1937, Krylov and Bogolyubov
published a paper in French42 in the U.S. journal «Annals of  Mathematics»,
titled “La théorie générale de la mesure dans son application à l’étude des
systèmes dynamiques de la mécanique non linéaire”. This paper was explicitly
mentioned by Kolmogorov in the 1985 note commenting on the classical
mechanics papers included in the first volume of  his Selected Lectures. There,
he wrote that he had become deeply interested in the question of  what
ergodic sets (in the sense of  Bogolyubov-Krylov) could exist in dynamical
systems of  classical mechanics, and which types of  such sets could have
positive measure.

In relation to the research on ergodic theory described above (§1.2.2),
the Soviet authors present their own contribution, aimed at formulating
ergodic theorems within their area of  interest:

«La seule condition restrictive vraiment essentielle dans leurs recherches consiste
dans l’existence d’une mesure invariante la notion présentant une généralisation toute
naturelle de celle d’un invariant intégral, utilisée jadis par h. poincaré dans la
démonstration de son théorème classique sur la récurrence des mouvements dans
les systèmes de Liouville. 
Vu le grand intérêt théorique des théorèmes ergodiques et la variété de leurs
applications physiques il était très désirable d’étendre le domaine de la validité de
ces théorèmes sur les systèmes pour lesquels aucune mesure invariante n’est donnée
à priori. 
C’est avec les systèmes dynamiques de ce dernier type qu’on a affaire en mécanique
non linéaire dans différentes questions concernant les oscillations non linéaires.»
(Krylov, Bogoliubov 1937, p. 65).

41 See (Krylov, Bogolioubov 1933, 1937, 1950). An American edition was published under
the editorial direction of  Solomon Lefschetz. See also (Israel 2004).
42 In those years, it was very difficult for Soviet academics to publish in a foreign language
other than Russian. On this matter, Sergei S. Demidov wrote: «À la fin des années trente, les
savants soviétiques ne voyageaient presque plus à l’étranger, et les séjours de spécialistes
occidentaux en URSS étaient également devenus très rares. Cette restriction des contacts fut
aggravée par la diminution graduelle du nombre de publications de savants soviétiques dans
des revues scientifiques étrangères, jusqu’à l’interdiction totale» (Demidov 2009, p. 133).
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What they refer to as a condition restrictive is the fact that the hypothesis
of  the existence of  invariant measures is not satisfied in dynamical systems
that describe dissipative phenomena – that is, those systems in nonlinear
mechanics that arise in various contexts involving nonlinear oscillations.

Through their work, Krylov and Bogolyubov made it possible to
extend ergodic theory to such cases. Indeed, they stated that the fundamental
result of  their 1937 paper was the demonstration that it is always possible to
construct invariant measures, and even transitive measures, in the phase space
of  such systems (see Theorems I, II, and III in Krylov and Bogolyubov 1937,
pp. 92-95). With these results, they succeeded in applying the ergodic
theorems of  G. D. Birkhoff  and J. von Neumann to the systems under
consideration.

Moreover, they introduced the important concept of  ergodic sets43 – a
concept that would later draw Kolmogorov’s interest – and proved that the
phase space of  a non-ergodic dynamical system can be decomposed (up to
sets of  measure zero) into a collection of  subsets on which the system is
ergodic.

For such a non-ergodic system, if  on almost all of  its ergodic
components the system has a purely discrete (i.e., point) spectrum –
corresponding to quasi-periodic motion – then the system is integrable.

This insight became a key element in Kolmogorov’s research program,
as seen in paragraph 4 of  his 1957 conference paper (Kolmogorov 1957, pp.
367-370). In fact, Kolmogorov explicitly draws upon the work of  these two
Ukrainian mathematicians in dealing with cases where the phase space of  the
hamiltonian system is non-compact. I will explore this aspect in greater detail
in §3.1.

43 See Definition Ix in (Krylov and Bogoliubov 1937, p. 103).
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2 Fascination and risk. Aspects of  Andrej N. Kolmogo-
rov’s intellectual trajectory in Soviet science until 1941

The development of  science in the Russian Empire during the final
decades of  the Tsarist monarchy and the Soviet regime has received increasing
attention in recent years.1 Within this lively intellectual environment Christi-
anity situated between petty nobility and a cultured bourgeoisie (Westernizers
or Slavophiles) Christianity not only literary culture but also scientific culture
flourished, making it possible to speak of  an “intelligentsia science” (Gordin,
hall, Kojevnikov 2008). The scientific movement in cities such as St. peters-
burg, Moscow, Kazan, and Kiev had distinctive characteristics that merit fur-
ther study, even thirty years after the end of  the Soviet Union’s political
experience:

«The Russian Empire possessed ten universities at the beginning of  World War I,
the oldest (Moscow) dating to 1755. Its Imperial Academy of  Sciences (1725) con-
tinued to sponsor valuable research throughout the nineteenth and early twentieth
centuries. If  nineteenth-century Russia was often thought of  in the West as a country
outside the scientific tradition, a nation where forms of  Slavic mysticism and Or-
thodox Christianity2 not conducive to science were the principal intellectual trends,
it is quite clear, to the contrary, that by the end of  that century Russia possessed a
developing and capable scientific community already rooted in an institutional base.»
(Graham 1993, p. 80).

This evolution can be seen as part of  a broader trend toward modern-
ization – industrialization, social progress, and political evolution – and the

1 Among recent contributions on the evolution between the late 19th and 20th centuries, see
(Graham 1993), (Rabkin, Rajapolapan 2001), (Kojevnikov 2002), as well as the papers in-
cluded in the monographic issue of  Science in Context (introduced by the same author), and
those published in the issue of  Osiris devoted to Intelligentsia Science. The Russian Century
1860-1960 (Gordin, hall, Kojevnikov 2008). For the evolution of  science under Stalinism,
see also (Krementsov 1997).
2 The case of  Russia can be considered within the broader framework of  the cultural con-
ditions influencing the development of  science in regions shaped by Christian Orthodoxy
(Nicolaïdis 2011). For mathematics – especially in Moscow and with the outstanding role of
pavel Florenskij – see (Shaposhnikov 2017).
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increasing cultural ties of  the intelligentsia with other European countries,
beginning with the late 19th-century reforms of  Alexander II. The social and
political tension directed at the autocratic regime was also linked to the spread
of  positivism and scientism.

«The cult of  science flourished across Europe at the beginning of  the twentieth cen-
tury. It happened to be particularly prominent in the Russian empire, which had only
recently embarked upon industrialization and modernization. Almost all parts of
the political spectrum bought into it, although for different reasons. For Russian lib-
erals, science was synonymous with economic and social progress; for the radical
intelligentsia, including the yet utterly insignificant and marginal Bolsheviks on the
very left, it was the closest ally of  the revolution. Many among the monarchists, too,
placed high hopes on modern science as a remedy for the country’s relative economic
backwardness vis-à-vis Germany, France, and Britain (other European countries
rarely figured in the comparison). After the Great Reforms of  the 1860s, they helped
institutionalize science and promote the research imperative at Russian universities,
hoping that at the very least it could dis- tract unruly students from pursuing dan-
gerous political temptations.» (Kojevnikov 2008, pp. 115-116).

Understanding the phenomenon of  the modern spread of  science in
the Russian Empire requires a cultural historiographical approach. In fact, in-
telligentsia science was a complex phenomenon in which several trends can
be identified – from the philosophical and religious (Orthodox Christianity)
to the patriotic and utilitarian. Botany and chemistry received considerable at-
tention, for example, as both fields had a direct impact on the modernization
of  agriculture (Elina 2002); mathematics also developed in connection with
religious worship (Graham, Kantor 2000; Shaposhnikov 2017). Among the
outstanding and original figures, belonging to different generations and areas
of  science, one can consider Dmitrij Ivanovič Mendeleev (1834-1907);
Vladimir Ivanovič Vernadskij (1863-1945), a geochemist and mineralogist who
developed a holistic vision of  planet Earth and of  chemical and biological
processes; and Lev Semënovič Vygotskij (1896-1934), who pioneered a new
field of  research on the child, known as pedology. A network of  international
contacts developed, involving European countries as well as the United States.

There were both elements of  continuity and of  rupture in the evolution
of  science before and after the fall of  the Tsarist regime and the rise to power
of  the Bolsheviks in 1917:
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«The fact that the Soviet Communist regime placed extraordinarily high value and
expectations upon science is, of  course, rather well known. So much so, perhaps,
that it has usually not been seen as a historical problem but has been taken for
granted as something natural that does not ask for further discussion or inquiry. Be-
hind the cover of  obviousness, however, one can find a complex combination of
historical choices and heterogeneous reasons – some ideological, some pragmatic,
some accidental – that together may offer an explanation of  why, among all the var-
ious political regimes and movements of  the twentieth century, Communism, espe-
cially in its initial Soviet incarnation, happened to be the one most favorably
predisposed toward science, believing most utterly, up to the point of  irrationality,
in science’s power and value.
To begin with, the Soviets mounted their belief  in science on top of  a preexisting
and rather high foundation.» (Kojevnikov 2008, pp. 115).

Lenin’s and Stalin’s policy was to “preserve the old forms of  intellectual
and cultural institutions inherited from Tsarism”, even in the face of  criticism
from the left. The political evolution and ideological framework of  the Soviet
regime under Stalinism had a significant impact on the development of  sci-
entific research. Soviet science was expected to fulfill a dual mission: to con-
tribute to the construction of  the material foundations of  the socialist regime
and to support its ideology, including the fight against religious belief. More-
over, scientific relationships with foreign countries were increasingly viewed
with suspicion.

«À la fin des années trente, les savants soviétiques ne voyageaient presque plus à
l’étranger, et les séjours de spécialistes occidentaux en URSS étaient également de-
venus très rares. Cette restriction des contacts fut aggravée par la diminution gra-
duelle du nombre de publications de savants soviétiques dans des revues scientifiques
étrangères, jusqu’à l’interdiction totale.» (Demidov 2009, p. 133).

This broader context offers many insights into the fate of  classical me-
chanics in the Soviet Union. On the one hand, it was a favored area of  schol-
arship bridging mathematics and physics, due to its relevance for technological
applications. Moreover, celestial mechanics remained a prominent theoretical
field within astronomy, which had experienced remarkable development in
the Russian Empire, supported by a strong network of  observatories. On the
other hand, this very connection to astronomy may have hindered further re-
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search, due to the violent repression of  the discipline during Stalinism, be-
ginning in 1936. I quote the vivid description by Simon Diner3, in his 1992
essay on “The paths of  Determinist Chaos in the Russian School”, where he
describes what he called a “closed bubble” of  researchers engaged in devel-
oping poincaré’s legacy “in a universe of  physics where quantum mechanics
has stolen the limelight from classical mechanics”:

«En 1985 est inaugurée à Moscou une série de petits ouvrages: “problèmes contem-
porains des mathématiques. Orientations fondamentales.” [...] Que les huit premiers
volumes, ouvrant ce tour d’horizon exhaustif  des mathématiques, soient consacrés
aux “systèmes dynamiques” est une affirmation hautement significative de la puis-
sance de l’école russe en ce domaine. Ces volumes sont plus souvent dirigés (et même
rédigés) par les deux mathématiciens: V. I. Arnold et Y. G. Sinaï. La réputation de
ces deux élèves de A. N. Kolmogorov (1903-1987), l’un des géants mathématiques
du xxe siècle, n’est plus à faire. Et pourtant, le grand public en Occident ignore lar-
gement que ce sont essentiellement des savants russes qui ont pendant cinquante
ans exploité la partie de l’héritage d’henri poincaré, concernant la “théorie qualitative
des systèmes dynamiques” et la “mécanique non linéaire” dont le chaos déterministe
n’est qu’un des aspects les plus spectaculaires. Situation créée par la conjonction de
l’isolement relatif  de l’Union soviétique et les mobiles internes du développement
des mathématiques dans un univers de la physique où la mécanique quantique a ravi
la vedette à la mécanique classique. Le langage de poincaré semblait opaque et ses
idées en ont souffert, d’autant plus que les applications qu’il envisageait ne concer-
naient que l’astronomie.
[...] pendant tout ce temps l’URSS a vu éclore de nombreux travaux, dans des cir-
constances où ont simultanément joué des facteurs idéologiques et intellectuels, des
traditions scientifiques nationales et la constitution d’écoles scientifiques pour suivant
des programmes, pour ne pas dire des “plans”.
[...] Dans les années 30 toutes ces écoles de physique sont d’une manière ou d’une
autre engagées dans le grand mouvement international de la physique quantique,
manifestant par là le niveau de formation des physiciens russes et le non-isolement
initial de la Russie soviétique. [...] Mais la situation historique et politique de l’Union
soviétique des années 30 va contribuer à créer comme une bulle fermée [...]. Sous

3 Simon Diner, a theoretical physicist at the French CNRS, was born to a family originally
from Bessarabia, a region in Eastern Europe that was part of  the Russian Empire. his par-
ents, both chemists, left Bessarabia in 1930.
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l’influence de cette idéologie matérialiste, qui s’oppose d’une manière militante à
l’ensemble des démarches idéalistes, positiviste et formalistes, dominantes dans les
“sociétés bourgeoises”, de nombreux savants et penseurs soviétiques privilégient las
travaux qui cherchent à garder ou à restaurer une “image réaliste du monde”.» (Diner
1992, pp. 331-332, 335).

Andrej N. Kolmogorov’s scientific biography is closely intertwined with
the development of  mathematics in the Soviet Union, including aspects such
as mathematical education (Karp 2012, 2014), political conditions (Lorentz
2002; Kutateladze 2012; Demidov, Levshin 2016; Mazliak 2018; Vucinich
2000), and the development of  research schools (Demidov 2004). his polit-
ical views have been interpreted either as those of  an authentic Marxist loyal
to the regime (Graham 1993) or as those of  a representative of  intelligentsia
science, who lived through the troubled 1930s and 1940s, at times acting
against his own principles (Arnol’d 2000; Lorentz 2002).

In the present Chapter 2, I have gathered a number of  elements that
appear relevant to understanding the roots and cultural significance – within
the history of  mathematics and the history of  science in Russia – of  his con-
tributions to classical mechanics, viewed through the lens of  dynamical sys-
tems theory, which he presented shortly after Stalin’s death. As I stated in the
introduction, this investigation was prompted by Vladimir Arnol’d’s account
of  a conversation with Kolmogorov, dating back to 1984 – thirty years after
his closing lecture at the Amsterdam ICM.

To trace the cultural origins of  Kolmogorov’s contribution to classical
mechanics, two crucial pieces of  evidence must be taken into account:

First, Kolmogorov’s own words in a short note written for his Selected
Works and published in 1985 – which I quoted and examined in Chapter 1;

Secondly, as a kind of  touchstone, Arnol’d’s testimony, published in
the final years of  the 20th century. he was, in fact, the first scholar to raise
this historiographical issue.

Both sources offer insights into the mathematical landscape from which
Kolmogorov’s contribution emerged: a transitional setting that included the
longstanding problems of  celestial mechanics – still captivating many math-
ematicians around the world – and the emerging framework of  the general
theory of  dynamical systems, which was slowly gaining ground. I introduced
this landscape in Chapter 1, and in Chapter 3 I address the conceptual shift
involved in Kolmogorov’s contribution.
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Arnol’d’s testimony also offers insights of  a different nature, concern-
ing Kolmogorov’s life experience – including the roots of  his fascination with
astronomy and the possible, unforeseeable risks associated with working on
celestial mechanics and dynamical systems – which may help explain why he
presented his research in this area only after Stalin’s death.

2.1    The testimony of  a former student: A brief  conversation
between Vladimir Igorevič Arnol’d and Kolmogorov in 1984

he later related that he had been thinking about this problem for decades
starting from his childhood when he had read Flammarion’s Astronomy, but
the success had come only after Stalin’s death in 1953 when a new epoch had
begun in the Russian life. The hopes this death raised had a deep impact on
Kolmogorov, and the years 1953-1963 were one of  the most productive pe-

riods in his life.
V.I. Arnol’d in (Arnol’d 1997, p. 1)

“No”, he [A.N Kolmogorov] answered, “I was not at all thinking of  that at
the time. The main thing was that there appeared to be hope in 1953. From
this I felt an extraordinary enthusiasm. I had thought for a long time about
problems in celestial mechanics from childhood from Flammarion [...]. I had
tried several times, without results. But here was a beginning.”

V.I. Arnol’d in (Arnol’d 2000, p. 90)

Vladimir Igorevič Arnol’d was born in Odessa in 1937 and grew up in
Moscow.4 The same year Kolmogorov delivered his speech at the ICM in
Amsterdam, Arnol’d entered Moscow State University – fortunate to be the
right age at the right time:

«I entered the Faculty for Mechanics and Mathematics of  the Moscow State Uni-
versity in 1954 (before Stalin’s death in 1953 or after the invasion to Czechoslovakia
in 1968, this would probably have been impossible for me because my mother was

4 Nina Alexandrova Isakovich, his mother, came from a Jewish family in Odessa (on Jew-
ish Odessa, see Zipperstein 1985). In 1937, the city was part of  the Ukrainian Soviet So-
cialist Republic.
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a Jew while my grandfather was shot dead in 1938 on the flagrantly false charge of
espionage for England, Germany, Greece, and Japan).» (Arnol’d’s translated words
in Sevryuk 2014, p. 3).

In 1959, he presented his thesis under the supervision of  Kolmogorov,
and in 1961 he received the title of  Candidate in physical-Mathematical Sci-
ences at the Mstislav Vsevolodovich Keldysh Institute of  Applied Mathemat-
ics of  the Academy of  Sciences in Moscow. his dissertation included what
would become his famous solution to hilbert’s 13th problem. he was 28
years old when he became a professor in the Faculty of  Mechanics and Math-
ematics at Moscow State University. Arnol’d was the author of  influential
textbooks on the mathematical methods of  classical mechanics and on ordi-
nary differential equations. In (Arnol’d 2000), he published several letters sent
to him by Kolmogorov, revealing the close and confidential nature of  their
relationship. he was also a scholar deeply attentive to the historical evolution
of  mathematics and mechanics.

Arnol’d’s testimony concerns a conversation with Kolmogorov. The
fact that this episode is mentioned twice by Arnol’d – three years apart, in
1997 and 2000 (both after Kolmogorov’s death in 1987) – with slightly dif-
ferent nuances but a consistent core, lends credibility to this written account
of  a brief, fleeting oral exchange.

In the 2000 account, Arnol’d dated the conversation to 1984 – thirty
years after Kolmogorov’s Amsterdam lecture and one year before the publi-
cation of  his short note. In both versions, a key detail is that Kolmogorov
claimed to have been interested in unresolved problems in celestial mechanics
for decades – what Arnol’d, in contemporary language, referred to as “quasi-
periodic motions in dynamical systems”. Moreover, Kolmogorov traced this
interest back to childhood readings in astronomy, particularly works by
Camille Flammarion (1842-1925), the well-known popularizer of  astronomy
and author of  many widely translated bestsellers. The first version of  the
episode appeared in a volume (in Russian) commemorating Arnol’d’s 60th
birthday (Arnol’d 1997) and was later translated into English by M.B. Sevryuk
in 2014.

I quote from this translation: Arnol’d recalls a conversation he had
with Kolmogorov in later years, in which the motivations that led Kol-
mogorov to take an interest in topics related to his work on dynamical systems
and classical mechanics emerged.
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«he later related that he had been thinking about this problem for decades starting
from his childhood when he had read Flammarion’s Astronomy, but the success had
come only after Stalin’s death in 1953 when a new epoch had begun in the Russian
life. The hopes this death raised had a deep impact on Kolmogorov, and the years
1953-1963 were one of  the most productive periods in his life.» (Sevryuk 2014, p. 1).

This testimony does not refer to other scholars or to the research itself;
instead, it points to the political context and to biographical, intimate intel-
lectual experiences.

The second account (Arnol’d 2000) was published as Arnol’d’s contri-
bution to the collective volume Kolmogorov in Perspective, issued by the American
Mathematical Society in the history of  Mathematics series and translated by
h. h. McFaden. The volume includes several personal testimonies written
by former students and colleagues, reflecting on Kolmogorov’s private life.
In this contribution, Arnol’d explains in more detail how and when the ex-
change took place: that he had initially tried to understand the origins of  Kol-
mogorov’s contribution to classical mechanics on his own, before asking
Kolmogorov directly (here, he also reports the year of  the conversation).

I quote this report, dividing it into two parts:

«I constructed for myself  a theory of  the origin of  Andrej Nikolaevich’s work on
invariant tori: it began with his studies of  turbulence. In the well-known work of
Landau (1943) it was invariant tori5 – attractors in the phase space of  the Navier-
Stokes equation – that were used to “explain” the onset of  turbulence.[...] In a dis-
cussion at the Landau seminar Andrej Nikolaevich remarked that a transition to an
infinite dimensional torus and even to a continuous spectrum can already take place
for a finite Reynolds number. On the other hand, even if  the dimension of  the in-
variant torus remains finite for a fixed Reynolds number, the spectrum of  a condi-
tionally periodic motion on a torus of  sufficiently high dimension contains so many
frequencies that it is practically indistinguishable from a continuous spectrum. The
question as to which of  these two cases actually holds was asked more than once by
Andrej Nikolaevich. A program for the seminar on the theory of  dynamical systems
and hydrodynamics was posted on a bulletin board in the Mechanics and Mathe-
matics Department of  Moscow State University at the end of  the 1950’s [...]. Andrej
Nikolaevich chuckled about the tori of  Landau: “he (Landau) evidently did not

5 See chapter 3 for more details.
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know about other dynamical systems.”» (Arnol’d 2000, pp. 89-90).

he refers to Lev Davidovich Landau (1908-1968), recipient of  the 1962
Nobel prize in physics, who contributed to several areas of  mathematical
physics, including mechanics, hydrodynamics, quantum physics, and statistical
physics. “The transition from the tori of  Landau to dynamical systems on a
torus would be a completely natural train of  thought” was, in the end,
Arnol’d’s own idea. But Arnol’d goes on:

«In the final analysis I almost believed in my theory and (in 1984) asked Andrej Niko-
laevich whether it was really so. “No,” he answered, “I was not at all thinking of  that
at the time. The main thing was that there appeared to be hope in 1953. From this
I felt an extraordinary enthusiasm. I had thought for a long time about problems in
celestial mechanics, from childhood, from Flammarion, and then –reading Charlier,
Birkhoff, the mechanics of  Whittaker, the work of  Krylov and Bogolyubov, Chazy,
Schmidt. I had tried several times, without results. But here was a beginning.”»
(Arnol’d 2000, p. 90).

here, we see references to scholars, books, and disciplines – alongside
mentions of  Kolmogorov’s childhood and the political context – interwoven
with his personal state of  mind and emotions. Notably, two Soviet authors,
Krylov and Bogolyubov, are also mentioned in Kolmogorov’s 1985 note,
while von Neumann is absent. The other figures have already been discussed
in Chapter 1, precisely in connection with this testimony by Arnol’d. Beyond
exploring the roots of  Kolmogorov’s contribution, the list itself  offers insight
into the fate of  classical mechanics around 1900.

Common to both versions of  the short conversation are the reference
to his childhood reading of  Flammarion and the allusion to “a hope” felt in
1953 – suggesting the opening of  a new era for life in the USSR. The mention
of  Stalin’s death may have been Arnol’d’s interpretation. In any case, these
reflections point, somewhat unexpectedly, to the human dimensions of  sci-
entific practice.

In the following paragraphs, I consider separately some aspects of  Kol-
mogorov’s childhood and education, as well as elements of  the scientific cli-
mate under Stalinism, in order to shed light on possible reasons for the
“discontinuity” in Kolmogorov’s work on classical mechanics – from his early
interest in the 1920s and 1930s to his actual publications in the 1950s.
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2.2   Reading Flammarion and Timirjazev. Kolmogorov as
member of  the Russian “Intelligentsia Science”

The young Kolmogorov, born two years before the 1905 upheavals that
marked the final years of  the Tsarist regime, was raised in his mother’s family
of  landowners – first in Tunoshna, near Yaroslavl, and then, at the age of
six, in Moscow.6 his mother, Marya Yakovlevna Kolmogorova, died in child-
birth, and her aunt, Vera Yakovlevna Kolmogorova (1863-1950), brought him
up. She, along with Kolmogorov’s father, Nikolai Matveevich Kataev,7 be-
longed to the radical Russian intelligentsia: educated individuals committed
to ideals of  justice and freedom, interested in the arts and sciences, and ad-
vocates of  new or progressive education.

Andrej Nikolaevich attended a private gymnasium in Moscow, founded
by two women: Evgeniya Albertovna Repman (1870-1937)8 and Vera Fe-

6 In the aftermath of  Kolmogorov’s death, Tikhomirov – former student and editor of  his
Selected Works – published a short but insightful essay, The Life and Work of  Andrej Nikolaevich
Kolmogorov (Tikhomirov 1988), which includes a biography of  the mathematician, a descrip-
tion of  his work, and a list of  all his pupils. In addition, (Shiryayev 1989, 2000) also drew on
autobiographical recollections found in Kolmogorov’s book On Mathematics (Kolmogorov
1988; in Russian, no English translation is available) and in the volume Kolmogorov in Perspective,
respectively.
Among other sources, see (Kolmogorov 1963), an interview published in the magazine
«Ogonek», as well as an interview with filmmaker Aleksandr Nikolaevich Marutyan (b. 1946),
conducted during the preparation of  the film Stories on Kolmogorov (1983). This interview is
partially referenced in Natal’ya Grigor’evna Khimchenko’s paper “The “Last Interview” with
A. N. Kolmogorov” (Khimchenko 2001), edited by V. M. Tikhomirov and published by
FAZIS/MIROS, Moscow, in 1999. See also the Introductory Note to the bibliography.
7 A cousin on his father’s side was the poet Ivan Ivanovich Kataev (1902-1937), who was a
victim of  the Stalinist period. Kolmogorov’s father (his parents were not married) was an
agronomist and a writer (Tikhomirov 1988, p. 2). Tikhomirov reports the following testi-
mony:
“In the thirties Andrej Nikolaevich stated in questionnaires that one of  his grandfathers was
a high-ranking nobleman and the other a fatherly Archdeacon. he spoke of  this with a touch
of  pride. I think that the reason for Kolmogorov’s pride here was that the position of  his
ancestors in the class hierarchy was not obvious enough, and that he did not demean himself
by concealing the truth in these difficult years”.
8 Repman, founder and director of  the school, was the eldest daughter of  Albert Chris-
tianovich Repman (1834-1917), who, from 1889, served as director of  the section on applied
physics at the polytechnical Museum of  Moscow (founded by Tsar Alexander II in 1870 as
the Museum of  Applied Knowledge). After 1917, the school was renamed Section Grade
School No. 23.
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dorovna Fedorova. The school educated boys and girls together and followed
the principles of  “experimental” pedagogy (Tikhomirov 1988). There are
compelling testimonies to the importance of  Kolmogorov’s childhood in
shaping his intellectual trajectory. he also lost his father at an early age. With
the fall of  the monarchist regime in 1917 and the war sweeping away institu-
tions, lives, and daily routines, his father – who had visited him from time to
time – became head of  the educational division of  the people’s Commissariat
(Narkomzem). In 1919, after being assigned to the Kursk government, he dis-
appeared.

Even so, it was a happy and intellectually stimulating period for the
young Andrej Nikolaevich. his circle of  close friends in adult life was rooted
in the friendships formed during his school years, including with his future
wife, Anna Dmitrievna Egorova (1903-1988), daughter of  the historian
Dmitrij Nikolaevich Egorov.9

his former student and collaborator in mathematics education from
the 1960s onward, Alexander Abramov (1926-2019), emphasized the crucial
influence of  these early years:

«[...] certain key events took place at various stages of  Kolmogorov’s life and had a
particular influence on him. Both Kolmogorov’s genius and his personality stem
from his childhood, adolescence, and youth. In his articles, letters, an  conversations,
he often returned to the events of  his early life. First, there was his early childhood.
Left without a mother – Maria Kolmogorova died while giving birth to him – Kol-
mogorov was raised in an atmosphere of  love and attention in a wealthy noble family
that embraced the best traditions of  the Russian intelligentsia, combining a deep in-
terest in culture with respect for work and adherence to democratic principles. Kol-
mogorov’s diligence, inquisitiveness, and talent began to take shape at a very early

9 In his diary pages from 1943 (Duzhin 2011), Kolmogorov mentions his life companion
pavel Sergeyevich Alexandrov (1896-1982), along with his three aunts – Vera, Nadya, and
Varya. he expressed a desire to bring back the first two from Kazan, where they had been
evacuated. Also named are his wife (whom he had married in 1942) and two other friends
from his school years: her former husband, the mathematician and painter Sergei
Mikhailovich Ivashyov-Musatov, and the geneticist Dmitrii D. Romashov (1899-1963), a
prominent scientist in the Soviet evolutionary biology school founded by Sergei Chetverikov,
who was arrested by the secret police in 1929.
Kolmogorov also mentions Oleg Sergeyevich Ivashyov-Musatov, the son of  Musatov and
his wife Anna, who would later study mathematics under his stepfather.
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age.» (Abramov 2010, p 89).

And this is how Tikhomirov describes Kolmogorov’s deep internal
connection to the experiences of  his early years:

«Kolmogorov retained very clear memories of  his early years. he was surrounded
by love, kindness, attention, and care. Those close to him endeavoured to develop
in the child curiosity and interest in books, science, and nature. Vera Yakolevna took
the boy through fields and woods and talked to him of  trees, flowers, herbs; she
went on walks with him in the late evening and showed him the starry sky, named
the constellations and the individual bright stars, told him of  the universe; in the
evening she read a lot – the stories of  hans Andersen, the tales of  Selma Lagerlöf...»
(Tikhomirov 1988, p. 3).

Among authors of  popular science books who left a lasting impression
on him were Kliment Arkadievich Timiryazev (1843-1920) and Camille Flam-
marion (1842-1925):

«The first deep impression of  the power and significance of  scientific research was
made on me by K.A. Timiryazev’s book Zhizn’ rastenii (plant life).» (Kolmogorov’s
words quoted in Tikhomirov 1988, p. 6).

As we have seen in Chapter 2, Kolmogorov himself, in conversation
with Arnol’d, recalled his childhood fascination with Flammarion’s presenta-
tion of  astronomy as the root of  his later scientific interest in celestial me-
chanics. The French astronomer published more than fifty works, translated
into many languages including Russian, and was regarded by his contempo-
raries as an apostle of  astronomy:

«Camille Flammarion might be described as the apostle of  popular astronomy. his
numerous literary works had for object primarily the popularisation of  astronomical
study in all its manifolds branches [...].
Flammarion was not content to spread abroad the gospel of  astronomy by book
and pamphlet. he believed in the practical application of  his theories for the spread
of  a universal knowledge of  the sky.» (porthouse 1925, p. 951)10.

10 From the obituary by William porthouse (1877-1964), a member of  the Manchester As-
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Strongly convinced that the study of  science was for everyone, Flam-
marion collaborated with numerous magazines and newspapers, actively par-
ticipating in the great scientific emancipation movement of  the second half
of  the nineteenth century. his books are rich in figures and illustrations and
are written in a direct and persuasive style, capable of  captivating and inspiring
the reader.

But which of  Flammarion’s astronomy books might Kolmogorov have
read? Based on the time period during which he would have encountered
such works as a child, one likely candidate is his most famous book, Astronomie
populaire, published in 1880 in paris by the publishing house C. Marpon et E.
Flammarion11. It was first translated into Russian as early as 1897 and reissued
in several subsequent editions (Flammarion 1880).

Divided into six chapters (The Earth, The Moon, The Sun, The Planetary
Worlds, The Comets, The Stars), it was intended to provide readers with an ele-
mentary yet enjoyable understanding of  astronomy – designed to engage
them from the very first pages.

«Ce livre est écrit pour tous ceux qui aiment a se rendre compte des choses qui les
entourent, et qui seraient heureux d’acquérir sans fatigue une notion élémentaire et
exacte de l’état de l’univers.
N’est-il pas agréable d’exercer notre esprit dans la contemplation des grands spec-
tacles de la nature? N’est-il pas utile de savoir au moins sur quoi nous marchons,
quelle place nous occupons dans l’infini, quel est ce soleil dont les rayons bienfaisants
entretiennent la vie terrestre, quel est ce ciel qui nous environne, quelles sont ces
nombreuses étoiles qui pendant la nuit obscure répandent dans l’espace leur silen-
cieuse lumière? Cette connaissance élémentaire de l’univers, sans laquelle nous vé-
géterions comme les plantes, dans l’ignorance et l’indifférence des causes dont nous
subis- sons perpétuellement les effets, nous pouvons l’acquérir, non-seulement sans
peine, mais encore avec un plaisir toujours grandissant. Loin d’être une science isolée

tronomical Society from 1905 until his death and editor of  the Journal of  the Manchester Astro-
nomical Society from 1913 to 1924.
On Flammarion, see (de la Cotardière, Fuentes 2001); on the dissemination of  science in
France, see La science populaire dans la presse et l’édition (XIXe-XXe siècles) (Bensaude-Vincent and
Rasmussen, eds, 1997).
11 Ernest Flammarion (1846-1936) was a French publisher and the brother of  Camille Flam-
marion.
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et inaccessible, l’Astronomie est la science qui nous touche de plus près, celle qui
est la plus nécessaire à notre instruction générale, et en même temps celle dont l’étude
offre le plus de charmes et garde en réserve les plus profondes jouissances.» (Flam-
marion 1880)12.

Fig 2.1. Astronomie populaire, 1903 Russian edition.

12 «This work is written for those who wish to hear an account of  the things which surround
them, and who would like to acquire, without hard work, an elementary and exact idea of
the present condition of  the universe. It is not pleasant to exercise our minds in the con-
templation of  the great spectacles of  nature? It is not useful to know, at least, upon what we
tread, what place we occupy in the infinite, the nature of  the sun whose rays maintain ter-
restrial life, of  the sky which surrounds us, of  the numerous stars which in the darkness of
night scatter through space their silent light? This elementary knowledge of  the universe,
without which we live, like plants, in ignorance and indifference to the causes of  which we
perpetually witness the effects, we can acquire not only without difficulty, but with an ever-
increasing pleasure. Far from being a difficult and inaccessible science, Astronomy is the sci-
ence which concerns us most, the one most necessary for our general instruction, and at the
same time the one which offers for our study the greatest charm and keeps in reserve the
highest enjoyments.» – Popular Astronomy (1894), English version translated by J. Ellard Gore,
London, Chatto & Windus, piccadilly, p. 1.
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Fig 2.2. On the left, an image from Astronomie populaire (Flam-
marion 1880, p. 290); on the right, an image from Initiation as-
tronomique (Flammarion 1908, p. 123).

Alternatively, Kolmogorov could have read a book written by Flam-
marion specifically for children: Initiation astronomique, published in 1908 in
paris by Librairie hachette and translated into Russian the same year (Flam-
marion 1908). At the time, Kolmogorov was five years old, living in Tunoshna
and being instructed at home by his aunts. The booklet was part of  the Initi-
ations scientifiques series, directed by the mathematician Charles-Ange Laisant
(1841-1920), who promoted the idea of  introducing children to science from
an early age13. As he writes in the opening pages:

«Il est destiné, entre les mains de l’éducateur, à servir de guide pour la formation de
esprit des tout jeunes enfants- de quatre à douze ansafin de meubler leur intelligence
de notions saines et justes, et de les préparer ainsi à l’étude, qui viendra plus tard.»
(Flammarion 1908, p. V).

here, Flammarion once again expresses his passion and commitment
to this project, and affirms the central role of  astronomy in scientific thought:

13 A French mathematician and politician, Charles-Ange Laisant served as a deputy from
Nantes and as a répétiteur at the école polytechnique in paris. he worked on mechanics, geom-
etry, and algebra, and was especially active in the field of  mathematics education and related
reforms (Avinet 2013).



«J’ai toujours pensé aussi qu’il n’est pas nécessaire d’ennuyer le lecteur puor l’instruire,
et que si pendant tant de siècles, l’Astronomie, la plus belle des sciences, celle qui
nous apprend où nous sommes et qui nous dévoile les splendeurs de l’Univers, est
restée à peu orès ignorée de l’immense majorité des habitants de notre planète, c’est
parce qu’elle a toujours été mal enseignée dan les Ècoles. Aujourd’hui, enfin, on
commence à la trouver intéressante, à lire le grand livre de la Nature, à vivre un peu
plus intellectuellement.» (Flammarion 1908, p. VII).

Even if  it is not possible to determine with certainty which of  the cited
texts Kolmogorov read, Arnol’d’s testimony suggests that this author played
a fundamental role in awakening the young Kolmogorov’s interest in the stars
and the mechanics of  the heavens.

Fig 2.2. On the left, an image from Astronomie populaire (Flammarion 1880, p. 290); on the
right, an image from Initiation astronomique (Flammarion 1908, p. 123).
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2.3   A silent work. Mathematics and the study of  nature

Kolmogorov’s final school years were marked by the fall of  the Tsarist
monarchy in October 1917 – he was 14 years old – and the rise of  Bolshevism
under Lenin. he had to leave Moscow between 1918 and 1920 with his family,
as he recounts in Kolmogorov (1988):

«In the hard year of  1919 Kolmogorov was compelled to seek some paid work. he
found work as a railwayman (both as librarian and stoker) on the train running be-
tween Kazan and Ekarterinburg (now Sverdlovsk). (The carriage containing the li-
brary stopped for some time at various small stations). At the same time he continued
to study diligently, preparing to take and external examination for the secondary
school. But somewhat to this disappointment, these efforts were of  no use – in the
summer of  1920 he was given a certificate stating that he had graduated from the
23rd school of  the second stage (the Repman grammar school had been renamed
thus) without having an examination.» (Tikhomirov 1988, p. 7).

In 1920, he enrolled both in the physics and Mathematics Department
of  Moscow University and at the D. I. Mendeleev Institute of  Chemical En-
gineering. At the time, engineering was perceived as something more serious
and necessary than pure science, as he would later remark in a 1963 interview
with the magazine «Ogonek» (Kolmogorov 1963). his career as a research
mathematician was already beginning, as a young member of  the vigorous
Moscow mathematics school, led by Dmitrij Fëdorovich Egorov (1869-1931):

«his formation as a mathematician was greatly influenced by Stepanov’s seminar on
trigonometric series. In this seminar unsolved problems were raised before the par-
ticipants, answers to which seem to be essential.
In 1922, after Kolmogorov completed his first independent paper (on the order of
magnitude of  the Fourier coefficients),14 he became a pupil of  Luzin.
With his participation in Stepanov’s seminar and the subsequent efforts under Luzin’s

14 he was 19 years old. he constructed an almost everywhere divergent Fourier–Lebesgue
series, which was published the following year under the title “Une série de Fourier-Lebesgue
divergente presque partout” in the newly established polish journal «Fundamenta Mathe-
maticae». This journal, founded in 1920 by a group of  polish mathematicians to strengthen
national mathematical culture during the restoration of  polish independence after the First
World War, was also conceived with a strong international orientation (Kuzawa 1970).
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supervision began the first creative period in the life of  Kolmogorov the mathe-
matician.» (Bogolyubov, Gnedenko, Sobolev 1983, p. 10).

Serger Sergeevich Demidov has described the origins and cultural pro-
file of  the Moscow mathematical school, comparing it with that of  Saint pe-
tersburg, and highlighting the damage caused by the campaigns against
Egorov, and later, in 1936, against Nikolai Nikolaevich Luzin (1883-1950)
(Demidov, Lëvshin 2016; Graham 2016; Joravsky 1970; Kutateladze 2012,
2013), as well as the inspirational figure of  pavel Aleksandrovich Florenskij
(1882-1937). The role of  Ernst Kolman (1892-1979) and other intellectuals
in monitoring ideological loyalty to the regime has also been examined in pa-
pers by Demidov himself, (Vucinich 2000), and (Seneta 2004).

Beginning in 1922, Kolmogorov also had an independent experience
as a teacher of  mathematics and physics and as a boarding school educator
in a secondary school within the network administered by the people’s Com-
missariat of  Education (Narkompros), led by Anatoly Lunacharsky (1875-1933)
and Lenin’s wife, Nadezhda Konstantinovna Krupskaya (1869-1939):

«Now I remember with great pleasure my work at the potylikha Experimental School
of  the people’s Commissariat of  Education of  the RSFSR. I taught mathematics
and physics (at that time they were not afraid to entrust the teaching of  two subjects
to 19-year-old teachers at the same time) and took an active part in the life of  the
school (I was the secretary of  the school board and a boarding school educator).»
(Kolmogorov 1963, p. 12)15

On 21 January 1924, Lenin died. During the early years of  Joseph
Stalin’s rule, Kolmogorov’s career and prestige began to rise: he graduated in
1925, and after completing his postgraduate studies, in 1929 he began teach-
ing at the Moscow University Institute of  Mathematics and Mechanics. That
same year also marked the beginning of  his lifelong partnership with pavel
Sergeevich Aleksandrov (1896-1982), a prominent young figure in the

15 See also (Khimchenko 2001). Although this early involvement in elementary education
may have begun as a job taken out of  necessity rather than choice, (Abramov 2011) shows
that in the 1960s and 1970s Kolmogorov returned to his interest in education – shaped by
his own early experiences – by participating in efforts to improve secondary mathematics
education in the USSR.
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Moscow mathematical school (Kolmogorov 1986).
Ten years later, Kolmogorov would be elected a full member of  the

USSR Academy of  Sciences – his ascent to scientific leadership unfolding
during the darkest years of  Stalinism. he built his intellectual path as a math-
ematician within the Soviet context, both by broadening his interests beyond
the focus of  the Moscow mathematical school in set theory and analysis, and
through epistemological essays in which he engaged with debates on mathe-
matics from the standpoint of  dialectical materialism, as Alexander Vucinich
has shown:

«In 1936, Kolmogorov had joined a group of  Marxist writers and mathematicians
in publishing a collection of  essays on mathematics as a unique body of  knowledge
and a cultural phenomenon of  immense complexity. his brief  article, originally pub-
lished in the «Front of  Science and Technology» in 1934, stated that the rising level
of  abstraction made it possible for modern mathematics to tackle a broader range
of  “real phenomena” and, at the same time, to be less rigid and “schematic” than
classical mathematics. The 19th century, in his opinion, recorded two major devel-
opments in mathematics: vast methodological improvements in two 17th-century
legacies, infinitesimal calculus and analytical geometry, and the opening of  new prob-
lems to mathematical inquiry by Georg Cantor’s set theory. Whereas classical analysis
concentrated exclusively on continuities in nature, the real strength of  set theory
was in opening discontinuities in nature and society to mathematical treatment. In
algebra and set theory, he saw the future stronghold of  mathematics. Kolmogorov
made no effort to discuss the uneasy relations between set theory and Marxist
thought. Contrary to the reigning Marxist view, he anticipated a promising future
for the axiomatic method in mathematics. […]
In 1936, at the time of  the most intense Stalinist pressure in favor of  applied science,
Kolmogorov made a series of  statements on “pure” and “applied” mathematics,
obviously designed, in their total effect, to appeal to both mathematicians and Marx-
ist theorists. To satisfy mathematicians, he noted that it was virtually impossible to
draw a line separating “pure” from “applied” mathematics. Today, he said, some of
the “purest” – that is, the most abstract – branches of  mathematics are the “basic
apparatus” of  entire branches of  natural science: number theory plays a major role
in crystallography, and topology provides the main methods in the study of  chemical
equilibria. Obviously, he was concerned with the application of  mathematics to var-
ious branches of  natural science. To satisfy both mathematicians and Marxist
philosophers, he noted that the country was much in need, not of  a shift of  emphasis
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from “pure” to “applied” mathematics, but of  an expansion and intensification of
the flow of  the most abstract mathematical knowledge to modern technology. The
technical application of  mathematics, traditionally underdeveloped, should be raised
to the heights reached by “pure” mathematics.» (Vucinich 2000, pp. 61, 64).

In the context of  early 20th-century debates on the nature of  mathe-
matic – among intuitionism, logicism, conventionalism, and formalism – Kol-
mogorov championed intuitionism. One of  his earliest general contributions
addressed these debates and was published in 1929 in the journal «Nauchnoe
slovo» (see Kolmogorov 2006).

In his entry “Mathematics” in the Great Soviet Encyclopedia, published in
1938, Kolmogorov uses the expression “dialectical development of  mathe-
matics,” yet his perspective appears quite close to the 19th-century ideal of  a
close connection between mathematics and the study of  natural phenomena.
his vision of  mathematics may have led to some misunderstandings regarding
the ideological orthodoxy maintained by Marxist philosophers of  mathemat-
ics, led by Ernst Kolman.

Loren Graham, in his essay Science in Russia and the Soviet Union: A Short
History (1993), described Kolmogorov as one of  the outstanding figures in
Soviet science.

«Most people now assume that all influence of  Marxism on Soviet science was dele-
terious. On the contrary, in the works of  scientists such as L. S. Vygotsky, A. I.
Oparin, V. A. Fock, O. Iu. Schmidt, and A. N. Kolmogorov, the influence of  Marx-
ism was subtle and authentic.» (Graham 1993, pp. 3-4).

To support this view, Graham compared Kolmogorov’s entry “Mathe-
matics” in the Great Soviet Encyclopedia (1938) with the entries “Mathematics,
Nature of ” by Alfred N. Whitehead and “Mathematics, Foundations of ” by
Frank Ramsey (1903-1930), published in the Encyclopædia Britannica in 1911 (11th
edition) and 1929 (14th edition), respectively16. Both Whitehead and Ramsey
viewed mathematics not as a reflection of  material relationships, but as a logical
system (Graham 1993, pp. 118-119; citing a 1941 edition).

Kolmogorov, by contrast, argued that “the abstractness of  mathematics

16 See (Ramsey 1931), The Foundations of  Mathematics and Other Logical Essays, London: Rout-
ledge and Kegan paul.

104



does not mean its divorce from material reality. In direct connection with the
demands of  technology and science, the fund of  knowledge of  quantitative
relations and spatial forms studied by mathematics constantly grows” (quoted
and translated in Graham 1993, p. 118).

Kolmogorov, in fact, discussed the nature of  mathematics during a pe-
riod marked by a strong transnational trend in the mathematical world toward
asserting the epistemological self-sufficiency of  mathematics. As Giorgio Is-
rael has shown in several contributions, this emphasis on the autonomy of
“pure mathematics” was counterbalanced by the development of  applied
mathematics in a modern sense – as a broad, independent field stemming
from mathematical physics. This new domain included applications to sci-
ences dealing with phenomena beyond the inanimate world and embraced an
approach based on the construction of  mathematical models.

«From a conceptual and methodological point of  view, one of  the most important
features of  the mathematical model is that it does not aim to be the only possible
representation of  a phenomenon or class of  phenomena. The model is not a mirror
of  reality, and there is no one-to-one correspondence between models and phenom-
ena. The same phenomenon can be represented by multiple models, which may be
selected based on criteria of  effectiveness but are not necessarily in competition with
one another, as they can offer different and compatible perspectives. Conversely, the
same model (or, more precisely, a single mathematical framework) can be used to
represent different phenomena, establishing a kind of  structural ‘homology’ between
them. This aspect is characteristic of  mathematical modeling, namely the method
of  mathematical analogy. It consists in identifying common features among phe-
nomena that may be very different from each other, and thus discovering connec-
tions that are often unexpected. If  one of  these phenomena is susceptible to an
effective and simple mathematical description, it can be considered a mathematical
model for all the other analogous (or ‘homologous’) phenomena. [...]
The science of  past centuries was deeply convinced that mathematics was capable
of  representing the true structure of  phenomena, and that this structure could be
uniquely reflected in a limited number of  fundamental equations. Such are Newton’s
equation of  mechanics, Laplace’s potential equation, the wave equation, the heat
equation, and Maxwell’s equations of  the electromagnetic field. The great 19th-cen-
tury mathematical physicist J. Fourier (creator of  the mathematical theory of  heat)
expressed this belief  by stating that nature and mathematical analysis are coextensive.
This conviction has its roots in Galileo’s idea that the great book of  nature was writ-
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ten by God in mathematical characters, and runs throughout the history of  modern
science up to A. Einstein, who stated: “We have the right to be convinced that nature
is the realization of  what is mathematically most simple” (Penser les mathématiques,
1982, p. 196).
If  nature is mathematically structured, then mathematics is not merely a descriptive
tool, but allows us to grasp the inner essence of  phenomena. Mathematical modeling
thus represents a new scientific practice that emerged in twentieth-century science,
and indeed characterizes it.»  (Israel 2000, ad vocem).17

In this separation between pure and applied mathematics, classical me-
chanics became a secondary subject for many “pure mathematicians,” while

17 My translation of  the Italian text: 
«Dal punto di vista concettuale e metodologico, una delle caratteristiche più importanti del
modello matematico è che esso non aspira a essere l’unica rappresentazione possibile di un
fenomeno o di una classe di fenomeni. Il modello non è specchio della realtà e non esiste al-
cuna corrispondenza biunivoca fra modelli e fenomeni. Il medesimo fenomeno può essere
rappresentato mediante più modelli fra i quali si può scegliere in base a criteri di efficacia,
ma che non sono necessariamente in competizione, potendo offrire prospettive diverse e
compatibili fra di loro. Viceversa, uno stesso modello (o, per meglio dire, un singolo schema
matematico) può servire a rappresentare fenomeni diversi, fra i quali istituisce una sorta di
‘omologia’ strutturale. Questo aspetto rappresenta un approccio caratteristico della m. m., e
cioè il metodo dell’analogia matematica. Esso consiste nell’identificare aspetti comuni tra fe-
nomeni eventualmente anche molto diversi fra loro e scoprire così collegamenti non di rado
inattesi. Se uno di questi fenomeni è suscettibile di una descrizione matematica efficace e
semplice, essa può essere considerata come un modello matematico di tutti gli altri fenomeni
analoghi (od ‘omologhi’) […] 
La scienza dei secoli passati era profondamente convinta che la matematica fosse capace di
rappresentare l’autentica struttura dei fenomeni e che questa si riflettesse univocamente in
un numero limitato di equazioni fondamentali. Tali sono l’equazione della meccanica di New-
ton, l’equazione del potenziale di Laplace, l’equazione delle vibrazioni, l’equazione del calore,
le equazioni del campo elettromagnetico di Maxwell. Il grande fisico matematico ottocentesco
J. Fourier (creatore della teoria matematica del calore) esprimeva tale credenza affermando
che la natura e l’analisi matematica sono equiestese. Questa convinzione ha le sue radici nell’idea
di Galileo secondo cui il grande libro della natura è stato scritto da Dio in caratteri matematici,
e percorre tutta la storia della scienza moderna fino ad A. Einstein, il quale affermava che
“abbiamo il diritto di essere convinti che la natura è la realizzazione di ciò che può essere
immaginato di più semplice dal punto di vista matematico” (Penser les mathématiques 1982, p.
196). Se la natura è strutturata matematicamente, la matematica non è un mero strumento
descrittivo ma permette di cogliere l’intima essenza dei fenomeni. La m. m. rappresenta
quindi una prassi scientifica nuova, che emerge nella scienza del Novecento e anzi la carat-
terizza.» 
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it continued to be studied – as Clifford Truesdell pointed out18 – by applied
mathematicians or engineers working in applied mechanics.

In the 1930s, Kolmogorov significantly broadened his scholarly interests.
From June 1930 to March 1931, he undertook his first academic journey abroad
– visiting Göttingen, Munich, and paris – together with Alexandrov.19 In 1933,
he published his landmark treatise on probability theory, Grundbegriffe der
Wahrscheinlichkeitsrechnung, in German. This work laid the axiomatic foundations
of  probability theory through the introduction of  measure theory. Jan von plato
has noted that the intersection with physics played a role in the research that
culminated in Kolmogorov’s aforementioned treatise on probability.

«Two works precede Grundbegriffe’s axiomatization of  measure theory [Kolmogorov,
1929, 1931]. In the latter, there was a physical motivation for constructing a theory
of  probability, namely the need to handle schemes of  statistical physics in which
time and state space are continuous.» (von plato 2005, p. 962).

Moreover, Kolmogorov was among the participants in the lively sem-
inar on the qualitative theory of  differential equations, inspired by Birkhoff
and led in Moscow from 1930 onward by his former professor Stepanov, to-
gether with Viktor Vladimirovich Nemytskii (1900-1967). Stepanov was
closely connected both to the mathematical circle of  pavel Aleksandrov –
which regarded Birkhoff ’s general theory of  dynamical systems as an out-
standing example of  the application of  set theory and topology, then new
areas of  mathematics, to mechanics and physics – and to the physical circle
of  Leonid Isaakovich Mandel’štam (1879-1944), who promoted a qualitative
approach to nonlinear mechanics (Nemytskii 1957; Alexandrov et al. 1968).

As noted in Chapter 1, scholars in the USSR developed a strong interest
in the work of  poincaré and Birkhoff, but focused largely on the study of
dynamical systems in engineering contexts, as Simon Diner has pointed out.
As for Kolmogorov, his 1985 note on his research in classical mechanics con-

18 See the Introduction.
19 Kolmogorov had numerous mathematical contacts in Göttingen: “with Courant
and his pupils in the field of  limiting theorems, where diffusion processes proved to
be limits for discrete random processes; with h. Weyl in intuitionistic logic; with E.
Landau on questions in the theory of  functions. he talked with hilbert, had scientific
contacts with E. Noether, h. Lewy, Orlicz, and many others” (Tikhomirov 1988, p.
10). On his contacts in paris, see (Demidov 2009).
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firms that he had followed the work of  Birkhoff, Koopman, and von Neu-
mann – described in Chapter 1 – suggesting, as Arnol’d’s testimony implies,
that he had been developing this line of  research privately for years, without
publishing anything, while continuing active work in other fields, such as in-
formation theory.

Kolmogorov did, however, publish a contribution on the dynamics of
biological populations, following the path opened in the mid-1920s by the
Italian scholar Vito Volterra, who used ordinary differential equations to study
biological problems and aimed to construct a “mechanics of  biological asso-
ciations.”

Why this silent work? Certainly, internal theoretical challenges may have
contributed to the delay in overcoming the impasse left by poincaré. But there
are also contextual factors regarding the state of  science under Stalinism that
should be taken into account.

In recent years, several contributions have shed light on the circum-
stances of  the so-called “Luzin affair”20 – a revolt against Luzin’s leadership
within the Moscow mathematical community, which had been deeply affected
by the actions of  Kolman. The events took place in the summer of  1936,
two years after the Academy of  Sciences had relocated to Moscow and shortly
before the mass repressions of  1937.

Moreover, Kolmogorov’s interest in applying mathematics to biology
would later bring him into conflict with Trofim Denisovich Lysenko (1898-
1976), who, in 1940, firmly rejected any use of  mathematics in the biological
sciences.21 perhaps more significantly, working on the three-body problem
may have been perceived as a risky endeavor. In October 1936, one of  the
leading figures in Soviet astronomy, Boris Vasilyevich Numerov (1891-1941?),
a scholar active in celestial mechanics among other areas, was arrested – an
early act in a broader campaign of  repression targeting the USSR’s astronom-
ical community.

In the conclusion of  this chapter, we now turn to this perhaps lesser-
known episode in the history of  Soviet science, which undoubtedly had an
impact on the development of  both mathematics and classical mechanics,
and which merits further study.

20 (Demidov, Lëvshin 2016), (Kutateladze 2013), (Levin 1990).
21 See (Krementsov 1997); (Roll-hansen 2005, 2008); (Joravsky 1960); (Graham 1993).
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2.3.1  The Great Purge of  Astronomers

The development of  Soviet astronomy up to Stalin’s death has been
described by Efthymios Nicolaïdis in terms of  three distinct periods. The
first, lasting until the late 1920s, was marked by continuity in research but
changes in organizational structure. The second period “sees the application
of  ideological concepts in astronomy and the official line of  the superiority
of  Soviet astronomy over astronomy called bourgeois.” The third period in-
volved an unprecedented upheaval in the scientific personnel of  Soviet as-
tronomy (Nicolaïdis 1984, p. 6).

Astronomy proved to be a particularly sensitive field from two main
perspectives:

«Until 1928, the change of  social order in Russia affected astronomy only with re-
spect to organizational matters: the new state organization was reflected in astro-
nomical institutions by the creation of  the Soviets of  astronomers. At the ideological
level the revolutionary state did not attempt to interfere in astronomy. Research and
educational programs continued as before, except insofar as they concerned material
problems.
After 1928 however, the Stalinist regime proclaimed a so called “Marxist” official
ideological line concerning science. This ideological line became the official line of
Soviet astronomy in 1931 Its principles were the following:
(1) There are two sorts of  astronomies Soviet and bourgeois. This principle comes from the
dogmatic principle that a capitalist regime restrains the scientific evolution while on
the contrary, the construction of  the socialist regime implies in addition the con-
struction of  a new, superior science. This principle of  “two sciences” was the main
Stalinist principle concerning all scientific fields. We will see that in astronomy, the
application of  this principle was to have terrible consequences for the leading Russ-
ian astronomers.
(2) Soviet astronomy must serve Soviet society more precisely astronomy must serve
ideology and the economy.
But how could astronomy serve Stalinist ideology? [...] Astronomy was a scientific
tool that would help to disprove what Stalinists called “religious myths”. In a more
specifically scientific field, soviet astronomy was ordered to fight against what was
termed idealistic western cosmological theories, and especially against the theory of
general relativity and the concept of  a finite universe - because to put limits and an
age to the universe would imply the Creation and so the existence of  a God.
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The relation between astronomy and the Soviet economy was a more complicated
concept.
The general line that all activities in the USSR must serve the “building of  socialism”
implied that research in astronomy must also have industrial applications It was dif-
ficult to make applications concrete, and so the ideological line spoke about re-
searches concerning Earth Sun relations and geodesy.» (Nicolaïdis 1990, pp.
346-347).

The ancient connection between the study of  the stars and cosmolog-
ical or theological questions, combined with the difficulty of  identifying prac-
tical “applications” for astronomical research, led to sharp friction between
the regime and the scholarly community. This tension culminated in one of
the most dramatic episodes in the history of  science under Stalinism: the
purge that devastated the powerful group of  astronomers working within the
extensive network of  observatories inherited from the Russian Empire.

The most prominent astronomers of  the time – such as Aleksandr
Aleksandrovich Ivanov (1867-1939), Boris petrovich Gerasimovich (1889-
1937), former and current directors of  pulkovo, and Boris Vasilyevich Nu-
merov, director of  the Leningrad Astronomical Institute – were not willing
to conform to the new ideological line dictated by the regime. While not
openly opposing it, they continued their research along the same lines as in
previous decades. The only supporters of  the new ideological direction were
amateur astronomers or secondary figures.

In the summer of  1936, «pravda» – the official press organ of  the Com-
munist party of  the Soviet Union from 1922 to 1991 – launched a brutal cam-
paign against the pulkovo Observatory. The attacks later extended to the
Tashkent Observatory and the Leningrad Astronomical Institute. Gerasi-
movich, then director of  pulkovo, along with all its astronomers, was accused
of  subservience to foreign science (McCutcheon 1991; Eremeeva 1995).

Simultaneously with the decline in pulkovo’s reputation, a young stu-
dent denounced Numerov. On 20 October 1936, he was arrested by the
NKVD and, under torture, was forced to sign a document accusing many of
his colleagues. Between late 1936 and the first half  of  1937, approximately
two dozen astronomers were arrested, leaving the Tashkent Observatory
nearly deserted. Most of  those arrested never returned. No further news of
Numerov was ever received after 1941.

The final rehabilitations of  those purged and who survived the repres-

110



sion date to 1956-57, leaving Soviet astronomy in a state of  vulnerability for
nearly twenty years. As Eremeeva, historian of  astronomy at the Shternberg
State Astronomical Institute (GAISh) in Moscow, has noted, it was only in
the late 1960s that these tragic events were brought to light and the names
of  the astronomers who had fallen into disgrace could finally be acknowl-
edged.

«The process of  reclaiming the memory of  the repressed astronomers “from Obliv-
ion” was uneven and difficult. At first it was forbidden even to mention them in
print. Indeed, it was the aim of  the authorities to expunge not only their scientific
work but their very names from human memory.
[...] personal factors played an important role in the process of  ’returning’ the names
of  the repressed astronomers. Thus long before the rehabilitation process had begun,
the names of  the disgraced astronomers appeared in the 1948 jubilee compendium
30 years of  astronomy in the USSR. In an article about the development of  fundamental
astrometry, M. S. Zverev even mentioned the contributions of  B. V. Numerov. S. A.
Shorygin, who in his own time had suffered arrest, compiled the bibliography that
included the works of  B. p. Gerasimovich; the main text, however, included no men-
tion of  Gerasimovich.
Only in 1964 did the historian of  astronomy Iu. G. perel’ dare to publish the first
brief  notes about Gerasimovich in the Soviet Astronomicheskii kalendar. Khrushchev’s
1956 “secret speech” detailing Stalin’s crimes to the 20th Congress of  the Commu-
nist party had by now become public knowledge, and the “thaw” of  the 1960s had
arrived. Thanks to the ’thaw’ perel was able to publish his article about Gerasi-
movich.» (Eremeeva 1995, p. 318).

Like many academics, Kolmogorov faced significant pressures during
this period – both indirectly, as he witnessed the events unfolding in the field
of  celestial mechanics, and directly, when the mathematical community was
shaken by the “Luzin affair” and when he became involved in genetics, pub-
lishing an article that contradicted the views of  a student of  Lysenko. Arnol’d
later described Kolmogorov’s state of  mind during and after the Great
purges:

«Although Andrei Nikolaevich himself  regarded the hopes that appeared in 1953 as
the main stimulus for his work, he always spoke with gratitude about Stalin (following
the old principle of  saying only nice things about the dead): “First, he gave each ac-
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ademician a quilt in the hard year of  the war, and second, he pardoned my fight in
the Academy of  Sciences, saying, “such things happen also here”. Andrei Nikolae-
vich also tried to speak kindly about Lysenko, who had fallen into disfavor, claiming
that the latter had sincerely erred out of  ignorance (while Lysenko was in power,
the relation of  Andrei Nikolaevich to this “champion in the struggle against chance
in science” was quite different).
[...] “Some day I will explain everything to you,” Andrei Nikolaevich used to tell me
after having done something contrary to his principles. Seemingly, pressure was ex-
erted on him by some evil genius whose influence was enormous (the role of  the
group transmitting the pressure was played by well-known mathematicians). he
hardly lived to the times when it became possible to speak of  these things, and, like
almost all people of  his generation who lived through the 1930’s and 40’s, he was
afraid of  “them” to his last day. One should not forget that for a professor of  that
time not to tell the proper authorities about seditious remarks made by an under-
graduate or graduate student not infrequently meant being accused the next day of
having sympathy with the seditious ideas (in a denouncement by the very same stu-
dent-provocateur).» (Arnol’d 2000, p. 92).
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3      Kolmogorov’s research program for Hamiltonian
dynamical systems: a look into the origins of  KAM theory

The statement of  the problem of  the motion of  systems that
are close to the systems of  classical mechanics, including the
problems of  orbit evolution in the three-body problem, dates
back to Newton. Laplace [2] stated explicitly the theorem on
stability of  the semimajor axes of  Keplerian ellipses, which is
a forerunner of  Kolmogorov’s theorem on preservation of
tori, but proved it only in terms of  approximate perturbation
theory. On analyzing numerous attempts to justify and improve
Laplace’s argument, poincaré [3] stated the problem in its
modern form (to study the motion of  a system whose

hamiltonian W (p) + θS(q, p, θ) is periodic in q) and called it
the basic problem of  dynamics (see [3], Chapter 1, §13). In the
papers under consideration Kolmogorov solves this problem
for the majority of  initial conditions in the generic case

(det∂2W/∂p2 ≠ 0).
Vladimir Arnol’d in the introduction to Kolmogorov’s Selected papers,

vol. 1 (1985), section on classical mechanics.1

Four mathematicians from the USSR took part in the International
Congress of  Mathematicians held in Amsterdam in 1954 – the second
congress held after the end of  the Second World War, but the first in which
Soviet mathematicians were allowed to participate.2

1 English translation in (Arnol’d 1991, p. 504). his references are to: I. Newton, Philosophiae
Naturalis Principia Mathematica, London, 1686; p. S. de Laplace, Traité de mécanique céleste, vol. 1,
paris, 1799; and h. poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, vol. 1, paris, 1892,
chapter 1, §13.
2 The 1936 Congress was suspended, and the series was reinstated only in 1950 (Cambridge,
Massachusetts). On that occasion, however, the Soviet mathematical community did not par-
ticipate. In the Proceedings, under the Secretary’s Report section, the following note is included:
“Shortly before the opening of  the Congress, the following cable was received from the
president of  the Soviet Academy of  Sciences: 
The USSR Academy of  Sciences appreciates having received a kind invitation for Soviet scientists to par-
ticipate in the International Congress of  Mathematicians to be held in Cambridge. Soviet mathematicians
are very busy with their regular work, unable to attend the congress. I hope that the upcoming congress will
be a significant event in mathematical science. Desire for success in congress activities. S. Vavilov, president,
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During the closing plenary lecture on September 9, Kolmogorov
presented to the international audience his ideas for a research program in
the field of  classical mechanics – specifically, “on the motion of  systems close
to the systems of  classical mechanics, including the problems of  orbit
evolution in the three-body problem,” as Arnol’d put it (in the note quoted
above). he had been reflecting on this topic for a long time, as the testimonies
reported in Chapter 2 suggest, and the ideas he presented encompassed those
of  two recent papers: “On dynamical systems with integral invariant on the
torus” (Kolmogorov 1953) and “On the conservation of  conditionally
periodic motions under small variations of  the hamilton function” (Kolmo-
gorov 1954), both published in Russian in the proceedings of  the Soviet
Academy of  Sciences («Doklady Akademii Nauk»), on November 13, 1953,
and just nine days before the lecture, respectively.

The Russian text of  the Amsterdam lecture was later published in 1957
in the Proceedings of  the International Congress of  Mathematicians, Amsterdam 1954
(Gerretsen, De Groot 1957). While the 1953 and 1954 papers are succinct
and contain only a few references each, the written version of  the Amsterdam
lecture offers a broader overview that opens future avenues for research and
includes 24 bibliographical references spanning the years 1917-1954.

On March 22, 1958, Kolmogorov gave a talk in paris at the Seminar
on Analytical Mechanics and Celestial Mechanics led by Maurice Janet (1888-
1983). A French translation by Jean-paul Benzécri (1932-2019) of  the Russian
text from the Amsterdam lecture (Kolmogorov 1957) was published in the
seminar series (Kolmogorov 1958) (see Fig. 3.1). 3

Ten years later, an English translation of  the Amsterdam proceedings
text of  Kolmogorov’s 1957 lecture was published in the United States as an
appendix to Ralph h. Abraham’s (1936-2024) book Foundations of  Mechanics
(1967). The book was prepared with the assistance of  Jerrold E. Marsden
(1942-2010), based on his notes from a series of  lectures given by Abraham
in the Department of  physics at princeton University, “aimed at recent

USSR Academy of  Sciences.” (Graves, hille, Smith, Zariski, eds. 1955, p. 122).
3 Kolmogorov’s contribution was published in the first volume of  the seminar series, correspon-
ding to the academic year 1957-58. While some scholars had the opportunity to attend the Am-
sterdam lecture, in the absence of  any audio or video recordings, this third paper is generally
referred to as “the Amsterdam lecture.” Further archival material concerning the preparation
of  the contribution for the Amsterdam Proceedings could enrich the analysis presented in this dis-
sertation on the cultural origins of  the theorem on the persistence of  invariant tori.
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mathematical results in mechanics […] attended equally by mathematicians
and physicists” (Abraham 1967, sixth printing 1987, p. xvii).

The Russian text of  the Amsterdam ICM proceedings, along with the
two papers (Kolmogorov 1953, 1954), was later included in volume 1 of  the
Selected Papers, published in Moscow by «Nauka» in 1985 and edited by
Vladimir Tikhomirov. The English translation for the 1991 edition was
prepared by Vladimir M. Volosov.4

4 The three English translations differ not in content, but in wording – even in the translation
of  paragraph titles. I have used the 1991 translation by Volosov.
Vladimir Markovich Volosov (born 1928) developed his scientific career in the field of  non-
linear mechanics, focusing on ordinary and partial differential equations, at M. V. Lomonosov
Moscow State University. he graduated in 1950 from the Faculty of  physics, Department
of  Mathematics, earned his ph.D. in 1956, and his D.Sc. in 1961. he later became a professor
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In §3.1, I describe the content and rhetorical structure of  the published
text of  Kolmogorov’s Amsterdam lecture, which revolves around a central
section (Section 3). This section features two questions in its title and can be
understood as outlining a research program on hamiltonian systems. The
path is traced through a rich bibliography that, on the one hand, anchors
Kolmogorov in past research, while on the other, builds upon conjectures
pointing toward future developments.

The core of  Kolmogorov’s research program consists of  two theorems:
one on the persistence of  invariant tori, and the other on the Lebesgue
measure of  persistent invariant tori – both concerning analytic, nearly-
integrable hamiltonian systems (with a nondegenerate integrable hamiltonian
and bounded phase space). These theorems were first stated in Kolmogorov
(1954) and later presented in the Amsterdam lecture. They will be the primary
focus of  §3.2.

In this chapter, I also analyze the Diophantine condition, which plays
a key role in the proof  of  Theorem 1, comparing its application to that found
in a 1942 article by the German mathematician Carl Ludwig Siegel (1896-
1981). Siegel, together with Jürgen Moser, authored Lectures on Celestial
Mechanics (1956), based on Moser’s notes from a series of  Siegel’s lectures
delivered in 1951-52.

Finally, in §3.3, I address Kolmogorov’s broader research program,
aimed at resolving longstanding problems in celestial mechanics and opening
new avenues for the study of  hamiltonian dynamical systems.

and a member of  the P. P. Shirshov Institute of  Oceanology of  the Academy of  Sciences.
Volosov had previously translated a 1980 textbook by Viacheslav M. Starzhinskii, which was
published in English by MIR (Moscow) under the title Advanced Course of  Theoretical Mechanics
for Engineering Studies (1982). See: <www.mathnet.ru/eng/person12469>.
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3.1   “The many-sided interrelations with the most varied
branches of  mathematics”: A metric and spectral approach
to the problems of  classical mechanics

I will consider my objective accomplished if  I have managed
to convince the audience that, in spite of  the great difficulties
and the limited nature of  the results already obtained, the prob-
lem I have posed of  using general notions of  modern ergodic
theory for qualitatively analyzing motion in analytic and, par-
ticularly, canonical dynamical systems deserves great attention
of  scientists capable of  comprehending the many-sided inter-
relations with the most varied branches of  mathematics re-
vealed here.

(Kolmogorov 1957, pp. 372-373)

With the words quoted above, Kolmogorov concluded the text of  his
lecture at the ICM in Amsterdam. The “problem” or issue at stake was
presented as a challenge to scholars willing to explore the internal connections
between different areas of  mathematics – including classical mechanics –
rather than remain confined to specialized research fields.

In Table 3.2, the paragraphs of  the published text (Kolmogorov 1957)
are listed to guide the description of  how Kolmogorov developed his subject.
he captured the attention of  his audience and readers through examples and
direct questions, inviting them on a journey through dynamics, and approach-
ing evolution problems from a metrical and spectral point of  view, as sug-
gested by the “modern means” of  twentieth-century mathematics. While
outlining his research program, he also advanced several conjectures, which
contribute to the overall sense of  excitement in the presentation.
In fact, beyond presenting two theorems concerning hamiltonian systems,
the published text of  the lecture reveals that Kolmogorov had a broader
project in mind. his program envisaged a wide-ranging study of  dynamical
systems – not focused on a specific case or a single dynamical system
describing a particular real event, but rather aimed at establishing a general
method. This method would allow one to determine which properties can
be considered “general” or “exceptional” (in the sense of  measure theory),
both for the function defining the system and for the orbits it describes.
Let us now consider the approach he adopts in the Introduction:
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«My aim is to elucidate ways of  applying basic concepts and results in the modern
general metrical and spectral theory of  dynamical systems to the study of
conservative dynamical systems in classical mechanics.
[...] the poincaré-Carathéodory5 recurrence theorem initiated the “metrical” theory
of  dynamical systems in the sense of  the study of  properties of  motions holding
for “almost all” initial states of  the system. This gave rise to the “ergodic theory”,
which was generalized in different ways and became an independent centre of
attraction and a point of  interlacing for methods and problems of  various most
recent branches of  mathematics (abstract measure theory, the theory of  groups of
linear operators in hilbert and other infinite-dimensional spaces, the theory of
random processes, etc.).

5 Constantin Carathéodory (1873-1950) was a mathematician of  Turkish-Greek origin, best
known for his work in mathematical analysis. See (Georgiadou 2004) and (phili 2002).

Table 3.2. Kolmogorov’s 1954 Amsterdam lecture: an overview of  its contents through the
paragraphs of  the published text (Kolmogorov 1957).

The general theory of dynamical systems and classical mechanics

Introduction

§1. Analytic dynamical systems and their stable properties

§2. Dynamical systems on a two-dimensional torus and some
canonical systems with two degrees of freedom

§3. Are dynamical systems on compact manifolds “in general”
transitive, and should we regard the continuous spectrum as the
“general” case and the discrete spectrum as an “exceptional”
case?

§4. Some remarks on the non-compact case

§5. Transitive measures, spectra, and eigenfunctions of analytic
systems

Conclusion



[...] For conservative systems, the metrical approach is of  basic importance making
it possible to study properties of  a major part of  motions. For this purpose,
contemporary general ergodic theory has elaborated a system of  notions whose
conception is highly convincing from the viewpoint of  physics.» (Kolmogorov 1957,
pp. 354-355).

he begins to illustrate the modus operandi he intends to adopt in his
research through a specific problem: a motion defined on an s-dimensional
manifold, Ω2s, by a hamiltonian system H (q1,..., qs , p1 , . . . , ps ), where (q1, . .
. , qs ) are position coordinates and (p1, . . . , ps ) are momenta. 

Assuming that the motion admits k prime integrals6:

I1 = C1, . . . , Ik = Ck ,

these integrals, being constant functions along the motions, reduce the
number of  degrees of  freedom of  the system from 2s to 2s - k, and define
within the phase space an analytic manifold, denoted M2s-k.
An invariant density can be defined on this manifold, which Kolmogorov
denotes by M(x). This function is key to applying the methods of  measure
theory in dynamical systems to motions on M2s-k:

«It is reasonable to resort to these more modern means when, apart from the
integrals I1 = C1, . . . , Ik = Ck , there are no single-valued analytic first integrals
independent of  the former or when their determination encounters severe
difficulties and other classical methods for completing the integration of  the system
also prove inapplicable. In such cases it is necessary to use a qualitative approach in
order to find out whether the motion on Mk-2s is transitive (that is, whether almost
the entire manifold Mk-2s consists of  a single ergodic set) and then, in the transitive
case, to determine the nature of  the spectrum or, in the absence of  transitivity, to
study, to within a set of  measure zero (or at least to within a set of  small measure),
the decomposition of  Mk-2s into ergodic sets and the nature of  the spectrum on
these ergodic sets.
There are only two specific problems of  classical mechanics known to me where
this programme has been realized to a certain degree.
[...] however, I believe that the time has now come when considerably more rapid

6 Kolmogorov’s prime integrals correspond to poincaré’s invariant integrals (see §1.1.2).
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progress can be made.» (Kolmogorov 1957, p. 357).

his intent, as described in the Introduction, is put into action in the
five paragraphs that structure his argument and include references to the pa-
pers and books listed in the bibliography. The published text of  his Amster-
dam lecture (Kolmogorov 1957) contains a bibliography with 24 references
to papers and monographs by 23 authors, published between 1917 and 1954,
from five countries outside the USSR, including the United States. The list
also includes Kolmogorov’s own papers from 1953 and 1954.

The oldest reference is émile Borel’s “Leçons sur les fonctions
monogènes uniformes d’une variable complexe” (1917), and the most recent
is the 1954 paper by the Soviet mathematician Mstislav Igorevich Grabar
(1925-2006), “On Strongly Ergodic Dynamical Systems”. Table 1 presents
the group of  scholars cited in the bibliography of  Kolmogorov’s 1957 text.7

The oldest among them is Ludwig Becker, while the youngest are two Soviet
mathematicians born in the 1920s: Mstislav Grabar and Kirill Aleksandrovich
Sitnikov. 

7 The name of  G. K. Badalyan also appears in the “long list”, but no biographical information
could be found.
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Table 3.3. Scientists cited in Kolmogorov’s works (1953, 1954, 1957, 1985) and in Arnol’d
(2000), ordered by date of  birth and nationality.

1 German-born, he worked in the United Kingdom from 1888 onward.
2 In Kyiv, the current capital of  Ukraine.
3 Japanese-born, he worked between the United States and Japan, primarily at princeton and Yale Universities.



Section 1 is devoted to concepts and notation that will be used in the
following central four paragraphs:

1. A dynamical system of  classical mechanics – which, he underlines, is “a special
case of  analytic dynamical system with an integral invariant” – is
defined by the differential equation

on a manifold  Ωn with 𝛼 = 1, ..., n

2. The invariant measure is defined by the integral

where M(x) is the invariant density defined above.

3. A canonical system is defined as a dynamical system represented by a
hamiltonian function in the variables (q1, . . . , qs ) and (p1, . . . , ps ) on
a manifold  such that

and with the invariant density equal to one:

M (q, p) = 1.

having introduced the mathematical objects, he turns back to clarifying
the modus operandi:

«particular attention will be paid to finding which of  the properties of  dynamical
systems are “typical” for “arbitrary” Fα and M (or an “arbitrary” function H (q, p) in
the case of  canonical systems) and which of  them can manifest themselves only by
way of  an “exception”. however, this is quite an intricate problem. The approach
from the standpoint of  the category of  corresponding sets in the spaces of  systems
of  functions {Fα, M} (or functions H ), despite the well-known achievements in this
direction obtained in the general theory of  abstract dynamical systems, is of  interest
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rather as a means for proving existence than as a direct way for solving actual
problems set by researchers in physics and mechanics, however stylized and idealized
their statement may be. By contrast, the approach from the standpoint of  measure theory
appears to be quite reasonable and natural as viewed from physics (for instance, as
it was set forth forcibly by von Neumann [1]), but its application is hampered by the
absence of  a natural measure in function spaces.
We will follow two routes. First, to obtain positive results establishing that a certain
type of  dynamical systems should be recognized as being essential, not
“exceptional”, and from any reasonable point of  view, should not be “neglected”
(in the way that sets of  measure zero are neglected), we will use the notion of  stability
in the sense of  preservation of  a certain type of  behaviour of  a dynamical system
under small variation of  the functions Fα and M or of  the function H . From this
standpoint, any type of  behaviour of  a dynamical system for which there exists at
least one example of  its stable realization should be recognized as being important
and not negligible.» (Kolmogorov 1957, pp. 358-359, my emphasis).

Note the use of  inverted commas for terms such as “exceptional,”
“neglect,” or “typical.”

In Section 2, Dynamical Systems on a Two-Dimensional Torus and Some Canon-
ical Systems with Two Degrees of  Freedom, Kolmogorov begins to demonstrate
his approach in practice by considering a dynamical system defined on a two-
dimensional manifold – specifically, a two-dimensional torus, T2. he justifies
the choice of  this example as follows:

«Therefore the real significance for classical mechanics of  the above analysis of
dynamical systems on T2 depends on whether there are sufficiently important
examples of  canonical systems with two degrees of  freedom, not integrable by
classical methods.» (Kolmogorov, 1957, p. 363).

It is in this section that we find the most references to the two
previously published papers – particularly an application, to the specific case
under examination, of  the theorem on the persistence of  invariant tori, which
had been published in general form just nine days earlier.8

Following an example, the discourse gains momentum in Section 3,
marked by the formulation of  two questions that make up its title:

8 For further details, see §3.2 on the theorem concerning the persistence of  invariant tori.
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1) Are dynamical systems on compact manifolds “in general” transitive?
2) Should we regard the continuous spectrum as the “general” case and the discrete

spectrum in an “exceptional” case?

Both questions – and the central Section 3 – serve as the fulcrum of
the lecture: they express Kolmogorov’s aim to clarify which properties of  a
general dynamical system can be considered general or exceptional, thereby
revealing the core of  his research program.

It is here that the connection with ergodic theory emerges, particularly
through the concept of  transitivity.9 The negative answer to both questions
sets a clear boundary to the widespread conjecture that the ergodic hypothesis
applies universally to all dynamical systems.

«This contradicted claims which one could often see in the physical literature
according to which any typical hamiltonian system with interaction should be
ergodic.» (Sinai 1989, p. 838)10

In (Arnol’d 1991), the author emphasizes that some conjectures
proposed by Kolmogorov in this section – concerning particular systems in
which cases of  mixing on tori would occur (as discussed in Kolmogorov
1953) – were later proved in two papers by Yakov Sinai and Dmitri
Victorovich Anosov in the 1960s:

«Systems with stable transitivity and mixing on the energy level surfaces which
Kolmogorov discusses at the end of  §3 of  the lecture at the Amsterdam Congress
(paper No. 53) actually exist. Sinai and Anosov proved that geodesic flows on
compact manifolds of  negative curvature (along each two-dimensional direction)
possess these properties [46-48]11. Moreover, these properties are preserved under
small perturbations not only in the class of  hamiltonian systems but also in the class
of  general dynamical systems.» (Arnol’d 1991, p. 510).

9 See §1.2 above.
10 One paper that aimed to demonstrate the opposite is Enrico Fermi’s “Dimostrazione che
in generale un sistema meccanico è quasi ergodico” (proof  that in general a mechanical sys-
tem is quasi-ergodic), published in the journal «Nuovo Cimento» (Fermi 1923a).
11 he refers to (Sinai 1966) and (Anosov 1967).
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Section 4 is devoted to the discussion of  a system defined on a non-
compact manifold. The goal is to extend the results obtained in the previous
sections to the study of  trajectories that escape from every compact region
Ω as t →∞ and t →-∞. Kolmogorov emphasizes the need to construct an
“individual ergodic theory” to address this case.12

To this end, he employs the same methods used by Krylov and
Bogolyubov in their 1937 paper (Krylov, Bogolyubov 1937), already discussed
in Chapter 1, §1.2.3, although their work was in the context of  nonlinear
mechanics with compact manifolds. here, the problem of  ultimate motions
in the three-body problem is addressed – an issue later studied in depth by
Kolmogorov’s students, Kirill Aleksandrovich Sitnikov and Vladimir M.
Alekseev (1932-1980).

Finally, in the concluding Section 5, Kolmogorov turns to aspects
closely related to the overseas works of  Birkhoff, Koopman, and von
Neumann, particularly concerning spectra and transitive measures:

«The spectral properties of  transitive measures in analytic systems have not been
studied enough.» (Kolmogorov 1957, p. 371).

In particular, he puts forward two conjectures:
1.       the stability of  a dynamical system with continuous spectrum, and
2.       that a countable discrete spectrum is “typical” in analytic dynamical 
         systems.

«It is not impossible that only these cases (a discrete spectrum with a finite number
of  independent frequencies and a countably-multiple Lebesgue spectrum) are
admissible for analytic transitive measures or that, in a sense, only they alone are
general typical cases.» (Ibidem)

It is again Sinai and Asonov who proved, in 1966 and 1967 respec-
tively,13 the first of  Kolmogorov’s conjectures presented in this section.14

12 In the compact case discussed in Sections 2 and 3, the “classical” results of  ergodic theory
can be applied, due to the availability of  an invariant measure (see §1.2.3).
13 (Sinai 1966) and (Asonov 1967).
14 “Kolmogorov’s conjecture (§5 of  paper No. 53) on the stability of  a continuous (more
precisely, countably-multiple Lebesgue) spectrum was proved by Sinai and Anosov [46, 47].
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In the last two sections of  the published text of  the Amsterdam lecture
all the influences that we have explored in Chapter 1 emerge, that set up the
cultural landscape as background of  Kolmogorov’s research programme.15

Some further discussion is needed here, and I present it in §3.3. But let’s turn
now to the crucial theorem on the persistence of  invariant tori, that he had
already worked out before presenting his closing lecture at Amsterdam.

3.2   Kolmogorov flips his cards: the paper “The preservation
of  conditionally periodic motions under small variations of
the Hamiltonian function” (1954)

The paper “The preservation of  conditionally periodic motions under
small”, written in Russian and published in «Doklady Akademii Nauk» in Au-
gust 1954, is stylistically quite different from the published text of  the Ams-
terdam lecture. Just four pages16 it focuses on the formulation of  two
theorems (unnamed, numbered Theorem 1 and Theorem 2) and provides a
demonstration of  the first, followed by a brief  concluding remark.

Theorem 1 concerns the persistence of  invariant tori for analytic,
nearly-integrable hamiltonian systems17. Theorem 2 addresses the Lebesgue
measure of  persistent invariant tori in such systems, assuming a nondegen-
erate integrable hamiltonian and a bounded phase space.

Thus far the conjecture that a discrete spectrum with a finite number of  independent fre-
quencies (not exceeding the phase space dimension) and a countably-multiple Lebesgue spec-
trum is typical has not been refuted for analytic systems.” (Arnol’d 1991, p. 513)
15 On its impact after 1954, Arnol’d wrote in 1991: “Kolmogorov’s classical papers Nos. 52
[see below, §3.2] and 53 [the Amsterdam lecture] produced a very strong effect on the sub-
sequent development of  the theory of  dynamical systems, and at present there are dozens
of  books developing or presenting the material of  these papers.” (Arnol’d 1991, p. 504)
16 Six pages in the version published in Volume 1 of  Kolmogorov’s Selected Works (English edi-
tion).
17 I adopt the terminology used by Arnol’d: “Kolmogorov’s 1954 theorem on the persistence
of  invariant tori under a small analytical perturbation of  a fully integrable hamiltonian sys-
tem,” and “he [Kolmogorov] arrived at his theorem of  1954 on the persistence of  invariant
tori” (Arnol’d 1997, pp. 742-743). The result is sometimes referred to as the “KAM theorem”
(see below, § 3.3.1). Naturally, Kolmogorov’s original notation differs significantly from those
currently in use; see (Chierchia 2008).
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The fate of  these theorems is rather peculiar. Theorem 1, due to the
nature of  Kolmogorov’s 1954 proof, is often conflated with subsequent con-
tributions from the 1960s by his former student Arnol’d (Arnol’d 1963) and
the German mathematician Jürgen Moser (1928-1999) (Moser 1962). This
has led to the perception that the latter two completed the actual proof. In
fact, Kolmogorov’s Theorem 1 has been effectively “merged” with the con-
tributions of  Arnol’d and Moser, with all three theorems now commonly re-
ferred to as the “KAM Theorem.” Theorem 2, by contrast, has been almost
entirely forgotten. It appears at the end of  the 1954 paper, without proof.
Arnol’d, in (Arnol’d 1963), merged the two theorems into a single statement
(Chierchia, Fascitiello 2024).

Theorem 1, on the persistence of  invariant tori, was considered and
reformulated in the published version of  the Amsterdam lecture – first in
Section 2, using the example of  a hamiltonian system defined on a two-
dimensional torus, and then in Section 3, where it is stated in the general case
of  a 2s-dimensional manifold.

3.2.1  The statement and meaning of  the theorem on the persistence
of  invariant tori in nearly integrable Hamiltonian systems

After a few introductory lines in which the mathematical objects
considered in the paper are presented, the statement of  the theorem on the
persistence of  invariant tori (Theorem 1 in the paper) follows. It is quite long
and detailed. This is followed by a brief  remark from the author on the
broader significance of  the theorem for (classical) mechanics, and then by an
extended discussion of  its proof  (approximately 2.5 pages).

This discussion does not constitute a full formal exposition of  the
deductive proof; rather, the author outlines the development of  his argument
point by point, without dwelling on individual logical or mathematical steps.

We can divide the section devoted to the proof  into three main phases:

1.      A brief  initial explanation of  the method used;
2.      A more technical central section, in which some mathematical steps in
the proof  are explained;
3.      A final part, introduced by the words “It is easy to see that [...]”
(Kolmogorov 1954, p. 352), where mathematical rigor gives way to a broader,
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more conversational explanation.

We will consider additional aspects of  Kolmogorov’s discussion of  the
proof  in §3.3.1. 

here, however, let us examine the original 1954 formulation of  the
theorem and its significance, which is connected both to problems in classical
mechanics – particularly celestial mechanics – and to ergodic theory.

Adopting the notation and wording used by Kolmogorov, we consider
a region G⊂ Ω2s , the phase space represented as the product of  an s-
dimensional torus T and a region S in an s-dimensional Euclidean space. 

In this setup, the points of  the torus are characterized by periodic
functions of  period 2π, q1 , . . . , qs , and the coordinates of  a point p in the
region S are denoted by the vector p1 , . . . , ps .

So, we consider a hamiltonian H in G having the canonical form

and suppose that:

• H also depends on a parameter θ (a perturbative parameter), where
θ ∈ (-c ; c) and is independent of  time;
• H is analityc in the variables (q, p, θ).

From this point on, we will consider the hamiltonian function H
defined on G, with θ = 0 taking the form:

where, m is a real constant and represents the constant energy of  the system,
α, β ∈ (1, . . . , s) are integers, (λ1, . . . , λs ) are the frequencies of  motions, the
sum  coincides with the scalar product between the vector of  the frequencies
(λ1, . . . , λs ) and the vector (p1, . . . , ps ) of  the coordinates of  a point belonging
to S.

The meaning of  Φαβwill be clearer in the statement of  the theorem. 
Finally, we will denote with
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and with Tc an s-dimensional torus in the region G, formed by the set of
points (q, p) with p = c constant.

We will assume that S contains the point p = 0, that is, T0 ⊆ S.

Kolmogorov’s theorem on the persistence of  invariant tori 

Theorem 1a Let

where m and λα are constants, and let the inequality

be fulfilled for a certain choice of  the constants c > 0 and η > 0
and all integral vectors n. Morover, let the determinant formed
from the average values

of  the function

be non zero:

Then there exists analytic functions Fα (Q, P, θ) and Gα (Q,
P, θ) defined for all sufficiently small θ and all point (Q, P)
belonging to a neighbourhood V of  the set T0 that determine a
contact transformation

qα = Qα + θ Fα (Q, P, θ), pα = Pα + θ Gα (Q, P, θ)

of V into V⊆ G reducing H to the form
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(M (θ) does not depend on Q or P ).

a Original version in Kolmogorov (1957), pp. 349-350.

Kolmogorov himself  provides an explanation of  the meaning of  such
theorem on dynamical systems in the case of  mechanics:

«The significance of  Theorem 1 in mechanics can easily be understood. It shows
that, under conditions (2) and (3), an s-parameter family of  conditionally periodic
motions

qα= λα t + qα(0) ,              pα= 0,

existing at θ = 0 cannot disappear under a small variation of  the hamilton function
H ; namely, the variation results only in a displacement of  the s-dimensional torus
T0, along the trajectories of  the motions: it is transformed into a torus P = 0, which
is filled with trajectories of  conditionally periodic motions with the same frequencies
λ1 , . . . , λs .» (Kolmogorov 1957, p. 350).

The condition is                 what is now known as the Diophantine
condition. It is a condition that can be imposed on an irrational real number λ.
It can be shown that this condition holds for almost all irrational real
numbers, except for a set of  Lebesgue measure zero (I will examine this in
greater detail in §3.2.2). 

Thus, Kolmogorov stated that for most initial frequencies – i.e. for all
those satisfying the Diophantine – the motions of  the perturbed hamiltonian
system remain quasi-periodic. The tori that foliate the phase space in the
unperturbed hamiltonian system are not destroyed by the perturbation but
are instead transformed into nearby invariant tori, on which the motions
remain quasi-periodic with the same frequencies  λ1, . . . , λs. 

Sinai emphasized the close connection between this result and
poincaré’s earlier work:

«Like poincaré, Kolmogorov considered small perturbations of  integrable systems
and proved that most invariant tori in the measure-theoretic sense are preserved
under small perturbations.» (Sinai 1989, p. 838).
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Indeed, Kolmogorov’s theorem represents an important contribution to the
“general problem of  dynamics,” originally formulated by poincaré (see above,
§1.2.1), and to its subsequent developments, which remained unresolved for
more than fifty years. Under the conditions imposed by Kolmogorov, and for
sufficiently small perturbations θ, nearly integrable perturbed hamiltonian
systems are stable for s ≤ 2, and for s ≥ 3, the majority of  initial conditions
yield solutions that remain stable for all time.

how and where does Kolmogorov place Theorem 1, on the persistence
of  invariant tori, in the published version of  his Amsterdam lecture? First, in
Section 2, he considers a particular case of  the theorem: a perturbed
hamiltonian system with two degrees of  freedom on a two-dimensional
torus.

As shown above (§3.1), Section 3 addresses the core of  Kolmogorov’s
research program: the attempt to identify general or exceptional properties
of  dynamical systems. he immediately clarifies that the two questions posed
in the section’s title are related to issues in ergodic theory (see §1.2.3).18

Kolmogorov shows that the answers to both questions are negative for
analytic canonical systems:19 canonical hamiltonian systems are, in general,
neither transitive nor do they possess a continuous spectrum.

Kolmogorov outlines only the essential points of  the proofs of  these
two claims, along with the differences between his results and earlier
approaches in perturbation theory.

«The method of  proof  consists in studying the behaviour of  the original tori Tc
2

with frequencies λα (c) satisfying condition20 under variation of  𝜃 21and establishing
that for sufficiently small ϵ each of  the tori is not destroyed and is merely displaced
in Ω with preservation of  trajectories of  conditionally periodic motions with
constant frequencies λα on it.
probably many of  you will already have guessed that, in essence, what we are talking about
is a certain modification of  the idea of  the possibility of  avoiding the appearance

18 Recall from §1.2.3 that if  T is a measure-preserving transformation on a space X, then T
is ergodic (or transitive) if  and only if  it has only trivial invariant sets – that is, if  and only if
m(E) = 0 or m(X − E) = 0 whenever E is a measurable set invariant under T .
19 “In application to analytical canonical systems, the answers to both questions are negative.”
(Kolmogorov 1957, p. 365).
20 Condition 2 corrisponds to a Diophantine condition (see above).
21 That is, the small perturbation of  the system.



of  abnormal “small divisors” when calculating disturbed orbits, which has been
extensively discussed in the literature on celestial mechanics. however, in contrast
to ordinary perturbation theory, we obtain exact results instead of  the conclusion
that the series of  some approximation of  finite order (relative to θ) are convergent.
This is achieved because instead of  calculating the disturbed motion for fixed initial
conditions, we change the initial conditions themselves so that, with varying θ, we
always deal with motions having normal frequencies λα (in the sense of  condition
(2)).» (Kolmogorov 1957), p. 364, my emphasis).

So, he observes:

«In application to analytic canonical systems, the answers to both questions are
negative, since the theorem on the stability of  the decomposition into tori which
we stated for systems with two degrees of  freedom remains valid for any number
of  degrees of  freedom as well.
[...] Thus, under small variations of  h the dynamical system remains non-transitive
and the region G continues to be decomposable, to within a residual set of  small
measure, into ergodic sets with discrete spectra (of  the indicated specific nature).»
(Kolmogorov 1957, pp. 365-366).

Thus, canonical hamiltonian systems are, in general, neither transitive
nor do they possess a continuous spectrum.

Theorem 1, as obtained by Kolmogorov, therefore inevitably raises
questions about the general validity of  the ergodic hypothesis.

however, as long as the number of  degrees of  freedom is finite, the
primary applications of  the ergodic hypothesis remain valid. By contrast, in
contexts such as statistical mechanics – where the number of  degrees of
freedom is very large or tends to infinity – Theorem 1, in its stated form,
does not generally apply.

Furthermore, Kolmogorov notes:

«No similar results regarding the stability of  a certain general type of  behavior of
non-canonical dynamical systems with an integral invariant and a compact phase
space Ωn are known to me.» (Kolmogorov 1957, p. 367).
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3.2.2 The diophantine condition: from Carl Ludwig Siegel (1896-1981)
to Kolmogorov

In 1942, Carl Ludwig Siegel (1896-1981) published the article “Iteration
of  analytic functions in the «Annals of  Mathematics»”. In his attempt to solve
convergence problems in a Fourier series, he employed the same Diophantine
condition on irrational real numbers that Kolmogorov would adopt twelve
years later (see above, §3.2.1). While the contexts differ, the question has
naturally arisen: was Kolmogorov aware of  Siegel’s work? Identifying this
condition is crucial, as it constitutes one of  the key assumptions in
Kolmogorov’s Theorem 1.

Siegel’s work on analytic functions
Siegel, a German mathematician of  Kolmogorov’s generation, was a specialist
in number theory with an early interest in astronomy. he began his mathe-
matical education in Berlin and, after the Great War, defended his doctoral
thesis in Göttingen in 1920. In 1922, he was appointed lecturer at the Johann
Wolfgang Goethe University in Frankfurt, where he remained until 1938,
when he accepted a professorship in Göttingen. however, in the spring of
1940, he left Germany22 and became a fellow at the Institute for Advanced
Study in princeton, where he remained until obtaining a permanent position
in 1946. In 1951, he returned permanently to Göttingen.

Already a leading figure in the development of  number theory, Siegel
turned in the 1940s to the theory of  analytic functions. his dual interest in
number theory and mathematical analysis is attested by Jean Dieudonné
(1906-1992):

«La renommée universelle de Siegel est surtout due à ses travaux de Théorie des
nombres, où il s’inscrit dans la grande lignée qui commence avec Fermat et se
poursuit avec Euler, Lagrange, Gauss et les brillantes écoles allemande et française
du xIx siècle. Mais on lui doit aussi d’importants résultats en théorie des fonctions
de plusieurs variables complexes et en mécanique céleste; il est d’ailleurs frappant
que tous ses mémoires de Théorie des nombres reposent sur un maniement de

22 Siegel’s “escape” from Germany is recounted by himself  in the text of  his Address given
on June 13, 1964, in the Mathematics Seminar of  the University of  Frankfurt on the Occa-
sion of  the 50th Anniversary of  the Johann Wolfgang Goethe University Frankfurt (Siegel
1979).
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l’Analyse mathématique d’une profondeur et d’une virtuosité incomparables.»
(Dieudonné 1983, p. 63).

Siegel gave lectures on celestial mechanics in Frankfurt and Main,
Baltimore, princeton, and Göttingen. In Göttingen, during the winter
semester of  1951-52, he delivered a lecture series which, based on notes taken
by the student Morse, formed the basis for the first edition of  Lectures on
Celestial Mechanics, published in 1956 (see Siegel and Moser 1995/1971, revised
edition).

Two papers – Siegel 1941 and 1942 – focused on a classical linearization
problem related to celestial mechanics. In the first, Siegel demonstrated that
every convergent integral (solution) of  a given canonical system can be
expressed as a power series in a single variable. however, it is Siegel himself
who warns the reader:

«This elegant method of  solution has also been generalized to the case of  a function
h which contains explicitly the variable t, in periodical form, and is closely related
to the important researches of  Delaunay, hill23 and poincaré in celestial mechanics.
however, there is a serious objection: The question of  convergence has never been
settled.» (Siegel 1941, p. 807).

In the 1942 paper “Iteration of  analytic functions”, already mentioned
above, Siegel goes one step further: the analytic power series

with the assumption that a1 is a number such that |a1 | = 1 and an ≠ 1 for
n = 1, 2. . . . and

log|an − 1| = O(log n)
is convergent.

It is then Siegel himself  who states that the hypothesis above on a1 is
equivalent to stating that, writing a1 in the exponential form a1 = e2𝜋𝜔 then

23 Charles-Eugène Delaunay (1816-1872), French astronomer and mathematician; and
George William hill (1838-1914), American astronomer and mathematician.
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for arbitrary integers m and n, n ≥ 1, where λ and µ are positive numbers,
depending only upon ω. This expression is precisely the Diophantine
condition that Kolmogorov imposed on the frequency of  motion to obviate
the problem of  small divisors which would have interfered with the
convergence of  the series.

Did Kolmogorov know about Siegel’s work?
Although the demonstrative techniques used by Siegel in 1942 and by
Kolmogorov in 1954 are entirely different, the coincidence of  their use of
the same Diophantine condition has inevitably raised the question posed in
the title of  this subsection – and the historical conjecture that Kolmogorov
was indeed familiar with the work of  his German colleague (see Dumas 2014,
pp. 15, 35, 64, 81; Goldstein 1980, p. 530).

Let us quote some excerpts from Dumas (2014):

«Occasionally, disagreement erupts over how much Kolmogorov proved in 1954.
[...] Still others think that C.L. Siegel’s name should be attached to the theorem.»
(Dumas 2014, p. 15).

And again:

«Kolmogorov (may have) adapted this step from Siegel’s work, as described above.»
(Dumas 2014, p. 64).

he further clarifies his reason for writing “(may have)”:

«In describing the first solutions of  small divisor problems, many references say
something like “Kolmogorov adapted Siegel’s techniques,” as I do here. however,
in the sequel I’ll qualify this with ‘perhaps,’ because, while there is no doubt that
Siegel’s work on small divisors preceded Kolmogorov’s by a dozen years, there does
not seem to be direct evidence that Kolmogorov knew about Siegel’s work.»

And to support his statement, he refers to an autobiographical paper
by Arnol’d:
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«I started inquiring whether somebody had examined all these questions between
A. Denjoy’s work of  193224 and my work of  1958. Among others, I found C. L.
Siegel’s papers on the linearization of  holomorphic mappings near fixed points. To
be more precise, I first invented this problem myself  (as a simplified model of  the
problem of  circle mappings) and solved it by Kolmogorov’s method. Only later on,
I discovered Siegel’s work who had obtained the same result by another method in
about 1940.
“We are in a good company,” Kolmogorov told me when I let him know of  my
bibliographic findings. As far as I understand, he was aware of  neither Siegel’s works
nor J. E. Littlewood’s25 works on the exponential slowness of  an increase in
perturbations.» (Arnol’d 1997, p. 738).

Although Siegel’s work undoubtedly contributed to the development
of  celestial mechanics, the extent to which Kolmogorov may have drawn
upon his research remains uncertain. When Siegel published his 1942 article,
he was already in the United States, as World War II was redrawing borders
and dividing nations. It is quite plausible that the German mathematician’s
work did not reach Soviet borders for several years, particularly during the
Cold War.

In this regard, in a paper from the 1960s, Arnol’d places their names
side by side in the opening lines of  the introduction:

«The difficulty of  qualitative problems of  classical mechanics is well known. In spite
of  prolonged efforts by many mathematicians most of  these problems still await
solution. Only in recent times, beginning with the work of  C.L. Siegel (1942) and
A.N. Kolmogorov (1954), has some progress been made in solving problems on the
stability of  motion of  dynamical systems.» (Arnol’d 2009, p 307).

In a more recent account, Arnol’d returned to the question with
additional details – including a critique of  academic practices in the United
States:

24 Arnaud Denjoy (1884-1974), French mathematician known for his work on real-variable
functions.
25 John Edensor Littlewood (1885-1977), English mathematician best known for his contri-
butions to function theory and series theory, many of  which were developed in collaboration
with Godfrey harold hardy.
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«Just at this time Kolmogorov was giving a course at Moscow University on his work
on small denominators and on hamiltonian systems and on what is now called KAM
theory. [...] I came to Kolmogorov with my theorems. 
“Well,” he said, “here is my paper in Doklady ’54. I think it will be good if  you
continue with this problem, try to think of  applications to celestial mechanics and
rigid body rotation. I am very glad that you have chosen a good problem.” [...]
I read other people’s works and I finally discovered some papers by Siegel, who was
a personal friend of  Kolmogorov when they stayed in Göttingen in the 1930s.26

Kolmogorov was not aware that Siegel had later worked on the small denominators
problem. Siegel’s paper was published in 194127 but was unknown to Kolmogorov.
he knew about the works of  poincaré, of  Denjoy, and of  Birkhoff, but not about
Siegel. So he told me that we were in very good company: 
“Siegel is really serious,” he said.
I had discovered the Siegel theorem related to the normal forms for circle rotations
because of  the system of  education at Moscow University, which was different from
that in America. I think it followed the German tradition that, when you have a result
and wish to publish it, you first have to check the literature to see whether someone
else has ever studied it. We were told this in our first introductory course in library
work, in which we were taught how to find, starting from zero information,
everything needed. There was no Internet at that time of  course, but still we were
able to find the references, and this is how I discovered that Siegel existed.» (Arnol’d
2004, p. 615).

Futhermore, on May 28, 2021, I had the opportunity to interview
Yakov Grigorievich Sinai.28 My first question concerned precisely this issue:

26 Siegel was in Frankfurt when Kolmogorov visited Göttingen in 1930-31. At that time, So-
viet mathematicians were not even allowed to write their papers in languages other than
Russian – let alone travel abroad. In (Shiryaev 1989)), where some details of  Kolmogorov’s
trip and the places he visited are reported, neither Siegel nor Frankfurt is mentioned. See
also (Kolmogorov 1986). however, it remains possible that they met in the 1930s. Kol-
mogorov’s papers, partially published in 2003 (see Introductory Note to the Bibliography), may
help trace these kinds of  contacts.
27 Arnol’d is likely referring to Siegel’s 1942 article here, although he appears to have the date
incorrect.
28 For the complete interview see (Chierchia, Fascitiello 2024, appendix).
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F: The first question concerns Siegel’s work on Diophantine estimates. These
techniques are also used by Kolmogorov in his proof  of  the theorem in 1954, but
he did not mention Siegel in the bibliography. Do you know if  Kolmogorov was
aware of  Siegel’s work on such a matter?

S: In my opinion, he didn’t know Siegel’s work. Siegel’s work was discussed later in
Arnol’d’s seminar, and I assume that Arnol’d explained Siegel’s work to Kolmogorov.
As you know, they both used small denominators.

F: Do you know what inspired Kolmogorov for Diophantine estimates?

S: I’m not so sure about this.

As a matter of  fact, Kolmogorov never mentioned Siegel’s work –
neither in the two papers published in Doklady, nor in the extensive
bibliography of  the published version of  the Amsterdam lecture, nor in the
note accompanying his work on classical mechanics in Volume 1 of  the
Selected Works.

Finally, it is worth recalling that Moser, who was a student of  Sinai, was
asked by «Mathematical Reviews» to review the published text of  the
Amsterdam lecture (Kolmogorov 1957). At that time, he had already been
working on the stability of  elliptic fixed points of  area-preserving mappings,
encouraged by Siegel (see Moser 1999). It seems rather surprising that in the
review he wrote, there is no mention of  any connection with Siegel’s work.

This issue presents an interesting case study from a historiographical
perspective – touching on both the transmission of  information in the
scholarly world and the evolution of  ideas in mathematics – and it deserves
further investigation. Whether or not Kolmogorov was aware of  Siegel’s work
does not, in any case, diminish the relevance, impact, or distinctive character
of  his own contribution.
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3.3   The roots of  Kolmogorov-Arnol’d-Moser (KAM) Theory

Of  his predecessors the most significant references are to
hadamard, Birkhoff, Borel, Brouwer, hilbert, Carathéodory,
Lebesgue, Luzin, Taylor, von Kármán, hardy, and hausdorff,
in other volumes to Chebyshev, Bernstein, von Mises, and
Fisher. I think that it is precisely them we must number among
those of  his predecessors to whom he turned most of  all.
Somewhat surprising is the absence of  references to poincaré.
This is largely because Kolmogorov learnt of  poincaré’s ideas
by reading the works of  Chazy and Charlier. The other
mathematicians to whom Kolmogorov refers were part of  the
current scientific scene. here we must mention the great
influence which the works of  Krylov-Bogolyubov and de

Rham29 had on him. 
(Tikhomirov 1988, p. 23)

Let us now revisit the points in Kolmogorov’s Amsterdam lecture
where the influence of  the mathematical landscape described in Chapter 1
appears most clearly. We will then briefly outline the future directions of  his
research program.

The work of  Bogolyubov and Krylov in the field of  nonlinear mechan-
ics appears in Section 4 of  the Amsterdam lecture, where Kolmogorov begins
to reflect on dynamical systems defined on noncompact manifolds. The study
of  such systems is made possible, in part, by the extension of  ergodic theory
introduced in (Krylov, Bogolyubov 1937). In that work, by constructing in-
variant and transitive measures even in cases where they are not naturally
present, they broadened the scope of  applicability of  ergodic theory.

On this subject, Kolmogorov offers only “some remarks” – as the title
of  the section reads – without reaching a definitive conclusion, as he does in
the compact case (Section 3) regarding the two questions on transitivity and
the spectrum. Instead, he outlines a few possible scenarios:

29 Georges de Rham (1903-1990), Swiss mathematician known for his contributions to dif-
ferential and algebraic topology. 
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«The arguments which, in the case of  a compact Ω, can be given in favour
of  the idea that a compact dynamical system of  “general type” is transitive, when
applied to non-compact dynamical systems, leads to the hypothesis that “in general”
one of  the following two cases holds: either the system is dissipative (that is, almost
all its points recede) or the measure m is ergodic (obviously, in the latter case the
receding points constitute only a set of  measure zero).

[...] When it is known in advance that there is a set of  positive measure
consisting of  receding points, then in accordance with what has been said, the
conjecture arises that the system is dissipative. Probably Birkhoff ’s assumption that the
three-body problem is dissipative is based on some consideration of  this kind.» (Kolmogorov
1957, p. 369, my emphasis).

Thus, the study of  noncompact manifolds becomes particularly
compelling when one considers its implications for celestial mechanics – not
only in the three-body problem, as Kolmogorov emphasizes, but also in cases
involving the capture or recession of  a celestial body. Regarding the latter, he
notes that very few scholars are currently drawn to these topics.

As an example of  the stagnation in addressing open problems in
celestial mechanics, Kolmogorov refers to his own disapproval of  certain
considerations made in the 1930s by the astronomer Chazy (see above, §1.1),
particularly regarding the conjecture that capture is impossible in the three-
body problem. he notes that this criticism was only recently confirmed –
almost twenty years later – by Schmidt, with further contributions by Sitnikov.

«We note that, among more elementary problems, particular problems dealing
with receding trajectories of  various specific types attract little attention of  specialists
in the qualitative theory of  differential equations. A spectacular example of  this is
the fact that a disproof  of  Chazy’s assertions that no “exchange” and “capture” are
possible in the three-body problem [17, 18] was first carried out in a way which is
cumbersome (and logically unconvincing without precise error estimates), using
numerical integration (see Bekker [19] and Shmidt [20]), and only recently has
Sitnikov [21] constructed an example of  “capture” in a very simple manner and
almost without calculations.» (Kolmogorov 1957, p. 370).
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In Sections 3 and 4, Kolmogorov addresses the question of  the
spectrum and its properties for transitive systems, as well as the existence of
transitive measures even in cases where the phase space in which the
dynamical system is defined is not compact. his interest in measure theory is
unsurprising, given his foundational work in this area, particularly his
Foundations of  the Theory of  Probability (Kolmogorov 1933).

however, as already mentioned in Section 2.3, Jan von plato has
suggested that Kolmogorov’s interest in measure theory may have stemmed
from an interest in physics, rather than the other way around.30

These issues were also of  great interest to von Neumann – along with
Birkhoff  and Koopman (see above, §1.2). Let us quote Sinai on the
connection between research in the 1930s and that of  the 1950s, from a 1989
paper on Kolmogorov’s work in this area, published in the «Annals of
probability»:

«Apparently the interests of  Kolmogorov in ergodic theory had already
started in the 1930s. In mathematical Moscow it was a period of  construction of
the foundations of  the theory of  stationary random processes. One might recall the
paper by Khintchine [he refers to (Khintchine 1938)] at that time dedicated to the
spectral theory of  such processes. [...] 

The paper by Khintchine [he refers to (Khintchine 1933)], where he gave a
purely metric proof  of  the Birkhoff  ergodic theorem, belonged to ergodic theory
itself. In view of  this paper the ergodic theorem on a.e. convergence of  time averages
is often called the Birkhoff-Khintchine theorem at least in the Russian literature. In
the 1930s, the well-known paper by Krylov and Bogolyubov [he refers to (Krylov,
Bogolyoubov 1937)] on invariant measures for groups of  homeomorphisms of
topological spaces was written.

In the beginning of  the 1930s, there appeared the famous paper by von
Neumann,31 where the general notion of  the metric isomorphism of  one-parameter
groups of  measure-preserving transformations was introduced. Also in [21]32 von

30 «Two works precede Grundbegriffe’s axiomatization of  measure theory [Kolmogorov,
1929, 1931]. In the latter, there was a physical motivation for constructing a theory of  prob-
ability, namely the need to handle schemes of  statistical physics in which time and state space
are continuous.»
31 This refers to (von Neumann 1932b); the “fame” of  this contribution merits further study.
32 (von Neumann, J. 1932). “Zur Operatorenmethode in der klassischen Mechanik”. «Annals
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Neumann proved a basic theorem of  metric isomorphism of  ergodic dynamical
systems with pure point spectrum. This theorem showed that for this class of
systems the spectrum is the complete metric invariant. Since that time the problem of
metric classification of  dynamical systems became one of  the central ones in ergodic theory. The
scientific activity of  von Neumann was always under close attention. It is not
surprising that this problem became well known quite soon in Moscow and several
mathematicians spent a lot of  effort trying to make some progress here.

[...] For Kolmogorov the end of  the 1930s was the beginning of  his classical
works on hydrodynamics and turbulence. his first publication which can be consi-
dered as relating to ergodic theory goes back to 1937,33 where he exposed the Birk-
hoff-Khintchine theorem in probabilistic terms.» (Sinai 1989, p. 833, emphasis mine).

Thus, in Sections 3 and 4 of  the Amsterdam lecture, the – somewhat
surprising – acknowledgement by Kolmogorov (in the 1985 note on his
contributions to classical mechanics, in Volume 1 of  his Selected Works; see
above, Chapter 1) of  the influence of  von Neumann’s writings on the spectral
theory of  dynamical systems finds full confirmation. Like the American-
hungarian mathematician, Kolmogorov approaches the problem from a
broad perspective, seeking general answers through the study of  dynamical
systems via ergodic and spectral theory.

Further confirmation comes from another part of  Sinai’s testimony, in
which he refers to the already mentioned seminar held in Moscow in the
autumn of  1957: Kolmogorov’s seminar on dynamical systems.

«In the autumn of  1957, Kolmogorov organized his famous seminar on
dynamical systems and gave a lecture course on the same subject. Among the
participants and listeners there were Alekseev, Arnol’d, Girsanov, Meshalkin, pinsker,
Sinai, Sitnikov, Tikhomirov and others.

[...] The lectures by Kolmogorov started with the proof  of  the metric
isomorphism of  dynamical systems with pure point spectrum. he gave an entirely
probabilistic exposition of  the corresponding theorem by von Neumann.

[...] In the seminar the participants discussed in much detail the construction
of  Ito’s multiple stochastic integrals and the ergodic properties of  Gaussian

of  Mathematics», Second Series, 33, 587-642.
33 This refers to Kolmogorov’s paper, in Russian, “On a Simplified proof  of  the Birkhoff–
Khinchin Ergodic Theorem” (Kolmogorov 1937).
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stationary processes. It is well known that such processes can be obtained as natural
limits of  quasi-periodic processes, that is, processes corresponding to dynamical
systems with pure point spectrum. A general feeling at that time was that there exist
some boundary separating dynamical systems of  probability theory and dynamical
systems appearing in ordinary differential equations, classical mechanics and
hydrodynamics or, as we call them sometimes, classical dynamical systems.» (Sinai
1989, p. 834).

After the seminar, some of  Kolmogorov’s students – as he had hoped
– devoted themselves to research in mathematical fields connected to his
broader program. For example, Sinai published an article on the entropy of
dynamical systems at the end of  1957. This work, closely related to ergodic
theory and classical mechanics, laid the foundation for further developments
in his later papers (Sinai 1959; Sinai 1964).

Arnol’d’s early work in the 1960s falls within the framework of
Kolmogorov’s research program on hamiltonian systems, with particular
relevance to celestial mechanics. As I have shown, Kolmogorov’s research in
dynamical systems can be traced back to the works of  poincaré and to the
unresolved problems in celestial mechanics at the start of  the 20th century.
however, the key hypothesis of  his theorem on the preservation of  invariant
tori – namely, the non-degeneracy condition (see above, §3.2) – is not satisfied
by the system that models the motion of  our solar system, and in particular,
the three-body problem.

In 1963, Arnol’d published the paper “proof  of  a Theorem of  A. N.
Kolmogorov on the preservation of  Conditionally-periodic Motions under
a Small perturbation of  the hamiltonian” (Arnol’d 1963a), in which he
extended Kolmogorov’s results to include certain important cases of
degenerate hamiltonian systems (Arnol’d 1963b; Arnol’d 1964).

Jürgen Kurt Moser – who had reviewed the published version of
Kolmogorov’s Amsterdam lecture in Mathematical Reviews in 1959 (Moser
1959; see below, §3.3.1) – stated.)34

I now turn to the proof  of  Kolmogorov’s theorem and its connection
to the contributions of  Arnol’d and Moser.

34 his paper was entitled “On Invariant Curves of  Area-preserving Mappings of  an Annulus”
(Moser 1962).
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3.3.1 KAM theorem or Kolmogorov’s theorem?

The proof  of  this theorem was published in Dokl. Akad. Nauk
SSSR 98 (1954), 527-530, but the convergence discussion does
not seem convincing to the reviewer. This very interesting
theorem would imply that for an analytic canonical system
which is close to an integrable one, all solutions but a set of

small measure lie on invariant tori.
(Moser 1959, Mathematical Reviews)

This theory is called KAM, or Kolmogorov-Arnold-Moser,
and people say that there is even a KAM theorem. I was never

able to understand what theorem is it. 
(Arnol’d 2004, p. 622).

When Moser submitted his review of  the 1957 published text of
Kolmogorov’s lecture to «Mathematical Reviews», he had just turned thirty.
In a 1999 recollection of  the episode, he wrote that serving as referee for
Kolmogorov’s lecture – now available in the ICM proceedings – filled him
with enthusiasm, as he had discovered someone else working on hamiltonian
mechanics at a time when interest in the subject was steadily declining.

«Some 40 years ago, when I was at MIT, the Mathematical Reviews asked me to
review the famous lecture of  Kolmogorov, held at the International Congress 1954
in Amsterdam. This is how I first learned about this work and I was very excited
about it. At that time there were few mathematicians interested in hamiltonian
mechanics, and it was encouraging to me to find others working in this field. The
significance of  this fundamental work was indeed apparent to me, since I had been
working on the stability problem of  elliptic fixed points of  area-preserving mappings,
a problem C.L. Siegel had urged me to pursue. Naturally, I was disappointed that
neither Kolmogorov’s address nor his Doklady announcement contained a proof.
Therefore I wrote to Kolmogorov asking for the argument. I never received a reply,
and I had to write my review not knowing whether this theorem was actually true. I
never believed in proof  “by authority”! I also had no doubt that Kolmogorov knew
how to prove his claims, but that did not help me!» (Moser 1999, p. 19, my emphasis).

Indeed, in the version of  the Amsterdam ICM lecture published in the
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proceedings, Kolmogorov states the theorem on the preservation of  invariant
tori in Section 3 without providing a proof, referring instead to his recently
published paper (Kolmogorov 1954) – specifically, to Theorem 1 therein –
where the proof  must be sought.

In that paper, Kolmogorov outlines – particularly in the central portion
of  the section devoted to the proof  (see above, §3.2) – only the essential
mathematical steps on which the demonstration of  Theorem 1 is based. I
have already quoted the theorem’s statement; let us now consider the
following lines from the three-part argument that follows:

«The transformation
(Q, P ) = K𝜃 (q, p)

whose existence in asserted in Theorem 1 can be constructed as the limit of
transformations

(Q(k) , P(k) ) = K𝜃
(k)(q, p),

where the transformations

(Q(1) , P (1) ) = L(1) (q, p), (Q(k+1) , P (k+1) ) = L𝜃
(k+1) (Q(k), P

(k) 
)

are found by a “generalized Newton’s method.” In this paper, we confine ourselves
to the construction of  the transformation K(1) = L(1) , which makes it possible to
understand the role of  conditions (3) and (4) of  Theorem 1.»35 (Kolmogorov 1954,
pp. 350-351).

One of  the distinctive features of  Kolmogorov’s new approach is the
construction of  an iterative algorithm that converges very rapidly, inspired
by Newton’s tangent method for solving algebraic equations. This rapid
convergence, in fact, makes it possible to neutralize the influence of  small
denominators.

Luigi Chierchia has noted that the proof  of  the theorem is based on
two key steps (Chierchia 2008):

35 Kolmogorov’s references correspond to the two conditions mentioned above (§3.2),
namely conditions (9) and (10).
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1.      the construction of  successive transformations of  variables (q, p), ob-
tained each from the previous one through Newton’s quadratic approximation
method;
2.      the convergence of  the iteration process.

Chierchia explains how to construct the Step 1 iterative process, but
provides limited detail regarding Step 2 – namely, establishing the convergence
of  the iteration. Specifically, with respect to the Diophantine condition
(condition (3) in his paper; condition (8) above), he identifies only the
“somewhat” more difficult part of  what would constitute a complete proof.

«Only the applications of  condition (3) in the proof  of  the convergence of  the
mapping Kθ

(k) to an analytic limit mapping Kϴ as somewhat more intricate.»
(Kolmogorov 1954, p. 352).

Therefore, he nearly takes for granted a crucial element in proving the
theorem: the analytic convergence of  the sequence of  functions K(k) to a
function Kθ , relying solely on the Diophantine condition on the frequencies
as sufficient.

A detailed proof  of  the theorem – one that could be considered
rigorous, fully convincing, or satisfactory – would require further arguments
in this regard. For example, it might involve the introduction of  a decreasing
sequence of  Banach spaces (of  progressively smaller dimensions), within
which the convergence of  each function Kϴ

(k) can be ensured at every step. 
A complete demonstration, which also attempts to retrace the original

formulation, has been published by Chierchia, who identifies the “missing
parts” in Kolmogorov’s original argument:

«We point out that step (ii)36 – which consists in introducing a scale of  Banach
spaces, giving recursive estimates and deducing from such estimates the convergence
of  the scheme – is based on very classical tools (such as Cauchy estimates for analytic
functions or the classical Implicit Function Theorem) obviously well known to
Kolmogorov.» (Chierchia 2008, p. 130, emphasis mine).

36 As stated above, this refers to the convergence of  the product iteration process.
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It is possible that the absence of  certain details in the original
demonstration, combined with Moser’s review, contributed to the lingering
uncertainty surrounding the attribution of  the theorem on the persistence of
invariant tori in nearly integrable hamiltonian dynamical systems to
Kolmogorov.

«Occasionally, disagreement erupts over how much Kolmogorov proved in 1954
(some say his sketch-of-a-proof  had such big gaps that it wasn’t a proof  at all; others
say that it was complete enough to drop the A and M and simply call the KAM
theorem ’Kolmogorov’s theorem’).» (Dumas 2014, p. 15).

In fact, secondary sources and popular accounts (see, for example,
Diacu and holmes 1996; Charpentier, Lesne, and Nikolski 2004) often
recount the story of  a theorem stated by Kolmogorov but proved almost a
decade later by Arnol’d and Moser (though the latter offered a different
version). This convergence of  the three results – Kolmogorov 1954, Moser
1962, and Arnol’d 1963 – is sometimes collectively referred to as the KAM
Theorem.

What remains open to discussion is whether Kolmogorov truly took
the missing aspects for granted – perhaps judging them trivial or unimportant
– or whether he simply overlooked the demonstrative gap. One may also ask
why, when Moser raised doubts about the result and wrote to him seeking
clarification, Kolmogorov did not provide the necessary evidence to dispel
the uncertainty and definitively validate his theorem. A possible explanation
is offered by Arnol’d:

«I turn now to KAM theory. This theory is called KAM, or Kolmogorov-Arnold-
Moser, and people say that there is even a KAM theorem. I was never able to
understand what theorem is it. In 1954 Kolmogorov proved his marvellous theorem
on the preservation of  tori in hamiltonian systems for the case when the
hamiltonian is almost integrable and all functions are analytic. What I contributed
was the study of  some degenerate cases – when one of  the frequencies is zero in
the nonperturbed system or when the vicinity of  the fixed points or periodic points
or tori is of  a smaller dimension – and then applications to celestial mechanics. All
these cases are separate theorems. My main contribution was the discovery (in 1964)
of  the universal mechanism of  instability in systems with many degrees of  freedom,
close to integrable (later called “Arnol’d diffusion” by physicists).
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In 1962 Moser extended Kolmogorov’s theorem to the case of  smooth functions.
In the first papers of  Moser the number of  derivatives was enormous. Now we
know that in the simplest case of  plane rotation you only need three derivatives, and
this is just the limit, the critical number of  derivatives. But in the beginning the
number was 333. For Kolmogorov, this was like a complete change of  philosophy
(he told me) because he expected, and even claimed in his Amsterdam talk, that the
result would be wrong even in C ∞ and that one would need analyticity or something
close to it, something like the Gervais condition.37

Moser complained that a proof  of  the theorem in the case of  analytic hamiltonians
was never published by Kolmogorov. I think that Kolmogorov was reluctant to write down
the proof  because he had other things to do in his remaining years of  active work – which is a
challenge when you are sixty. According to Moser, the first proof  was published by
Arnol’d. My opinion, however, is that Kolmogorov’s theorem was proved by
Kolmogorov.» (Arnol’d 2004, pp. 622-623, my emphasis).

Whatever the reasons may have been for Kolmogorov’s decision not
to publish a more complete or satisfying proof  of  the theorem on the
persistence of  invariant tori, one thing is certain: the theorems of  the three
mathematicians involved in this “dispute” are, in fact, distinct. Arnol’d’s
theorem incorporates, within its formulation, both Theorems 1 and 2 from
Kolmogorov’s 1954 paper. This is likely one reason why Theorem 2 has
remained so “forgotten” over time as a result separate from Theorem 1 –
along with the fact that Kolmogorov himself  never provided a proof  for it
(Chierchia, Fascitiello 2024).

Moreover, the proof  techniques employed by the three mathematicians
differ significantly. In (Moser 1962), the hypotheses of  the stated theorem
are not the same as those in Kolmogorov’s original paper from 1954. perhaps
it would be more accurate in the future to refer to each of  these theorems on
hamiltonian systems by their respective authors, using precise titles – such
as “Kolmogorov’s theorem on the preservation of  invariant tori in nearly
integrable hamiltonian dynamical systems.”

What is certain is that all three mathematicians made essential

37 A condition introduced by the mathematician Maurice-Joseph Gevrey (1884-1957), which
defines an intermediate function space between that of  smooth functions (i.e., C∞) and real-
analytic functions.
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contributions to the development of  what is now known as KAM theory,
which stands as a foundational framework in the study of  stability in
hamiltonian dynamical systems. These methods are especially significant for
problems modeled as hamiltonian systems, where stability is established
through the proof  of  convergence of  the Fourier series representing the
system’s solutions.
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Concluding remarks

In the overall scientific production of  Andrej N. Kolmogorov, a leader of
Russian and Soviet mathematics in the 20th century, the contribution to clas-
sical mechanics offers historiographical perspectives of  interest for under-
standing his cultural profile. As in the case of  John von Neumann, the
distinction that was established over the course of  the century between pure
mathematics and applied mathematics, and the fact that they brought contri-
butions of  great originality and cultural impact in both broad areas, could ob-
scure the presence of  a unifying vision of  the various sectors of  mathematics,
as well as an affirmation of  the necessary link between mathematical research
(with its internal motivations of  a conceptual and aesthetic nature) and the
drive to investigate reality, in all its manifestations.

Kolmogorov’s interest and work in classical mechanics began in the
1930s, in years in which attention to it was declining among mathematicians,
while physicists affirmed their theoretical independence from classical math-
ematical physics thanks to new independent theories. Also von Neumann,
while concerned with giving a solid axiomatic mathematical foundation to
quantum mechanics, was interested in classical mechanics. For both, however,
the frame of  reference had evolved: the research of  George David Birkhoff
indicated the need for a general point of  view, that would lead to the theory
of  dynamical systems, which, on the one hand, extended its field of  action
beyond mechanics, while, on the other, used newly available mathematical
tools. I have reconstructed how Kolmogorov approached and was in some
way part of  the international micro-community pioneering these studies –
today central to the complex of  mathematics, in particular regarding a great
variety of  technological and scientific applications. At the same time, in the
1920s-30s the conceptual and cultural attraction towards the open problems
of  celestial mechanics still persisted – as the core and the roots of  modern
science, even if  in a renewed theoretical framework. In this regard, I have ex-
amined the situation of  the studies around 1900, a stage in the history of
classical mechanics still little studied. In this case, the community of  as-
tronomers also comes into play, which had a great development in the Russian
Empire between the monarchy and the Bolshevik regime. Kolmogorov him-
self  linked his studies to the fascination for astronomy brought by one of  his
readings in adolescence, Camille Flammarion, as part of  the legacy of  the in-
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tellectual environment in which he was educated, between the estate of  his
maternal grandfather near Yaroslav and Moscow. On the other hand, the pos-
sibility has been explored that the gap between the interest in these topics in
the period between the world wars and the formulation of  an actual, plausible
research program in the wake of  the works of  henri poincaré in the after-
math of  Stalin’s death, may have derived from the violent repression of  as-
tronomers in the Soviet Union starting from the arrest of  Numerov in 1936.

The role of  Kolmogorov in Soviet science is an open issue, on which
monographic contributions have been published (especially those by Sergei
Demidov, in the context of  his research on the Moscow mathematical school
between the 19th and 20th centuries) or more specific ones, such as those by
Alexander Vucinich (author of  a remarkable study on the Soviet Academy
of  Sciences) in his analysis of  the philosophical debate on mathematics in
the Soviet era. The interest in classical mechanics appears as part of  Kol-
mogorov’s vision of  the unity of  mathematics in its branches and of  the de-
sirable harmonization between (abstract) theory and application/practice in
mathematics. his attention to the “old fashioned” celestial mechanics sup-
ports the fact that he was close to the 19th century ideal à la Fourier of  the
connection between mathematical analysis and the study of  nature.

Let’s have a closer look at some specific aspects resulting from my in-
vestigation:

1.      Kolmogorov in front of  Poincaré’s “Problème général de la
Dynamique”
More than sixty years before the formulation of  Kolmogorov theorem

on the persistence of  invariant tori, poincaré had defined the general problem
of  dynamics (see above, §1.1.1) as the study of  the quasi-periodic motions
of  a perturbed system written in hamiltonian form. he had realized that the
problem, written in its general form

F = F0 + µF1 + µ2F2 + . . . ,

where F0 denotes the hamiltonian function of  the unperturbed system and
µ the perturbation parameter, did not concern only aspects of  celestial me-
chanics – so dear to poincaré – but all those problems of  mechanics “close”
to integrable problems. 
Such an approach could potentially offer developments in many areas of  me-
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chanics, by providing knowledge on all those problems which can be con-
nected, through the theory of  perturbations, to the few known integrable
systems. In fact, while completely integrable systems are very few (see §1.2),
those close to integrable systems, in the sense of  perturbation theory, are
many. Thus, it is easy to understand why poincaré talked about “general”
problem. Kolmogorov provided a crucial contribution, as he opened a path
to deal with the problem, that led to subsequent developments: given the con-
dition of  non-degeneracy1 on the unperturbed hamiltonian system F0 , given
a very large set of  frequencies in the set of  real numbers (meaning that its
complement is a set of  zero Lebesgue measure), all frequencies satisfying the
Diophantine condition2, and given a sufficiently small enough perturbation
µ,3 most invariant tori present in the integrable unperturbed hamiltonian sys-
tem continue to survive. Each torus will deform only slightly with respect to
the unperturbed torus having the same frequency and so, in the phase space
of  the perturbed system, there are equally invariant tori, over which the mo-
tions are nearly periodic. Furthermore, in the phase space of  the perturbed
system, it turns out that the invariant tori are the majority, in the sense that
the Lebesgue measure of  the complement of  their union is small and depends
on the perturbation µ of  the system.

2. A micro-community working on frontiers of  mathematics in the
1930s
If  the line connecting Kolmogorov’s contribution to some results and

conjectures left open by poincaré appears quite clarified (Diacu, holmes 1996,
Barrow-Green 1997, Dumas 2014), a further, previously invisible thread links
Kolmogorov to other contemporary scholars working mainly in the USSR
and the USA, forming in a sort of  small international scientific community,
strongly united in the intentions and research methods used.

The apparent hiatus of  more than fifty years between Kolmogorov and

1 The second condition in Kolmogorov’s theorem on the persistence of  in-
variant tori, above in §3.2. here, I am using current notation, whereas earlier
I used Kolmogorov’s original notation.
2 The first condition in Kolmogorov’s theorem on the persistence of  invariant
tori, above in §3.2.
3 In Kolmogorov’s original 1954 paper, the perturbation corresponds to the param-
eter θ (see §3.2).
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poincaré is filled by this network which, in the 1930s, connects works stem-
ming from of  classical mechanics going even beyond the qualitative/geomet-
rical methods outlined in poincaré: von Neumann, Birkhoff, Koopman,
Krylov and Bogolyubov up to, of  course, Kolmogorov.

This mathematical micro-community, although divided geographically
(three in the United States, two in Ukraine and one in Russia), thoroughly ap-
plied measure theory to assess the bulk of  different behaviours in dynamical
systems, as well as the theory of  operators (thus considering the properties
of  functions defined on a hilbert space).

This was the approach used by Koopman, Birkhoff  and von Neumann,
who saw the evolution of  the ergodic theory and the formalizations of  the
homonymous theorems - by Birkhoff  and von Neumann - driven by the the-
orem obtained by Koopman connecting hamiltonian systems with unitary
operators. And in this wake, von Neumann’s interest in a further connection
emerges: the spectral theory, which connects a dynamical system to its spec-
trum, in an attempt – again – to provide information on a dynamical system
by deriving it from properties concerned some operators connected to it (the
eigenfunctions defined by the eigenvalues of  the spectrum, continuous or
discrete).

Working in Kiev, Krylov and Bogolyubov took up the work of  these
three American mathematicians and extended them to more general systems.
In fact, in conservative hamiltonian systems there is a natural measurement
function (the conservation of  volume, for example) whose existence is a nec-
essary condition for the development of  the techniques developed by von
Neumann in the field of  ergodic theory. Conversely, in nonlinear systems,
which often represent a dissipative dynamic, this measure is not present in a
natural way. Non-linear mechanics received great attention in the Soviet
Union in the 1930s because of  its technological potential applications. Thus,
in an attempt to apply the same approaches of  their overseas colleagues,
Krylov and Bogolyubov built a measure function in nonlinear systems, with
the same properties as the one existing for hamiltonian systems, starting from
which all the approaches used for the latter could be transferred to the study
of  non-conservative systems.

This new method, which transforms the study of  differential equations
or the hamiltonian in classical mechanics into a study in the field of  operator
theory and spectral theory, was the key to Kolmogorov’s work: his research
program perfectly reflects this methodology of  research followed by the col-
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leagues just mentioned. Furthermore, the study of  the possible transitivity
of  the system (or ergodicity) and the study of  its spectrum (continuous or
discrete), allow to answer questions about “general” or “typical” properties
of  almost integrable perturbed hamiltonian systems, instead of  properties
of  single, specific systems.

3.       A new paradigm in classical mechanics
The contributions of  the 1930s and 1950s, including the landmark 1954

paper and Amsterdam lecture by Kolmogorov that I have considered, are
rooted in the centenary history of  classical mechanics, that has had a para-
digmatic role in the evolution of  modern science and the extension of  its
methods beyond the inanimate.

The new mathematical approach and the corresponding formalism, in-
troduced at the beginning of  the 20th century, have brought a deep change
in the approach to classical mechanics, but – even avoiding any cumulative
view on the evolution of  science – past contributions (Lagrange, hamilton,
Jacobi, poincaré etc) are embedded and hidden in modern views. In spite of
the useful, successful applications of  theoretical research, hard basic problems
such as the three body problem and the stability of  the Solar system, between
theoretical schemas and real phenomena, appear as a fortress difficult to con-
quer. Continuing this metaphor, mathematical schemas appear as ways to at-
tack ancient problems from different points of  the enclosure and with ever
more sophisticated weapons. Mathematical analysis developed in symbiosis
with mechanical issues, until the turn to the qualitative approach from a more
geometric and topological theory conceived by poincaré at the end of  the
19th century.

In the 1921 revision of  his work, poincaré offered a reflection – from
his conventionalist point of  view – on the interaction between physical ob-
jects and theoretical “form” or “clothes”:

«Dans les théories physiques, il faut distinguer le fond et la forme. Le fond, c’est
l’existence de certains rapports entre des objets inaccessibles. Ces rapports sont la
seule réalité que nous puissions atteindre et tout ce que nous pouvons demander,
c’est qu’il y ait les mêmes rapports entre ces objets réels inconnus et les images que
nous mettons à leur place. La forme n’est qu’une sorte de vêtement dont nous ha-
billons ce squelette; ce vêtement, nous le changeons fréquemment, à l’étonnement
des gens du monde, que cette instabilité fait sourire et qui proclament la faillite de la
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Science. Mais si la forme change souvent, le fond reste. 
Les hypothèses relatives à ce que je viens d’appeler la forme ne peuvent pas être
vraies ou fausses, elles ne peuvent être que commodes ou incommodes. par exemple,
l’existence de l’éther, celle même des objets extérieurs ne sont que des hypothèses
commodes. C’est pour cela que l’on voit renaître de leurs cendres en se transformant
certaines théories que l’on croyait définitivement abandonnées. C’est pour cela aussi
qu’il y a certaines catégories de faits qui s’expliquent également bien dans deux ou
plusieurs théories différentes, sans qu’aucune expérience puisse jamais décider. Cela
est vrai en particulier pour les théories mécanistes. On peut en effet démontrer que,
si un phénomène comporte une explication mécanique, il en comportera une infi-
nité.» (poincaré 1921, p. 130).

Kolmogorov’s effort is a nice example of  the new general visions sug-
gested by developments in mathematics, and at the same time the search for
a new space and reconfiguration for classical mechanics after the birth of
theoretical physics. The aspects we have considered, suggested by the explo-
ration of  the roots of  Kolmogorov’s contribution, show its persistence in
modern mathematical thought, despite the sharp divisions between pure and
applied mathematics. As I recalled in the introduction, Dumas has pointed
out the need to build a narrative to understand the meaning of  the develop-
ment of  KAM theory in 20th century science, hidden also because of  the
split of  the mathematical international community during the central decades
of  the century. Reconstructing the roots of  Kolmogorov’s contribution has
included human and almost biographical roots, cultural roots, conceptual
roots, thus showing the relevance of  historiographical endeavor to enlarge
and deepen our understanding of  the role of  science in contemporary world.
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